Hyperspectral Sensor Characteristics: Airborne, Spaceborne, Hand-Held, and Truck-Mounted; Integration of Hyperspectral Data with LIDAR

[1]  Shunlin Liang,et al.  Earth system science related imaging spectroscopy — an assessment , 2009 .

[2]  Giles M. Foody,et al.  The significance of border training patterns in classification by a feedforward neural network using back propagation learning , 1999 .

[3]  Antonio J. Plaza,et al.  On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images , 2009, Pattern Recognit..

[4]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[5]  Bernard A. Engel,et al.  Optimization of training data required for neuro-classification , 1994 .

[6]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[7]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[8]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[12]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[13]  Antonio J. Plaza,et al.  Spatial/spectral endmember extraction by multidimensional morphological operations , 2002, IEEE Trans. Geosci. Remote. Sens..

[14]  Chein-I Chang,et al.  A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks , 2001, IEEE Trans. Geosci. Remote. Sens..

[15]  Chein-I Chang,et al.  Multispectral and hyperspectral image analysis with convex cones , 1999, IEEE Trans. Geosci. Remote. Sens..

[16]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[17]  Antonio J. Plaza,et al.  Spatial Preprocessing for Endmember Extraction , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Derek Rogge,et al.  Integration of spatial–spectral information for the improved extraction of endmembers , 2007 .

[19]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[20]  Chein-I Chang,et al.  High Performance Computing in Remote Sensing , 2007, HiPC 2007.

[21]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[22]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[23]  John A. Richards,et al.  Analysis of remotely sensed data: the formative decades and the future , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Antonio J. Plaza,et al.  Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[25]  S. Gerstl,et al.  Nonlinear spectral mixing models for vegetative and soil surfaces , 1994 .

[26]  Chein-I Chang,et al.  Constrained subpixel target detection for remotely sensed imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[27]  Antonio J. Plaza,et al.  A Quantitative and Comparative Analysis of Different Implementations of N-FINDR: A Fast Endmember Extraction Algorithm , 2009, IEEE Geoscience and Remote Sensing Letters.

[28]  Lorenzo Bruzzone,et al.  A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Elisabetta Binaghi,et al.  Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data , 2001, IEEE Trans. Geosci. Remote. Sens..

[30]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Lorenzo Bruzzone,et al.  A semilabeled-sample-driven bagging technique for ill-posed classification problems , 2005, IEEE Geoscience and Remote Sensing Letters.

[32]  Antonio J. Plaza,et al.  Spectral Mixture Analysis of Hyperspectral Scenes Using Intelligently Selected Training Samples , 2010, IEEE Geoscience and Remote Sensing Letters.

[33]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[35]  Mario Díaz,et al.  Size structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability , 2001 .

[36]  Jon Atli Benediktsson,et al.  Exploiting spectral and spatial information in hyperspectral urban data with high resolution , 2004, IEEE Geoscience and Remote Sensing Letters.

[37]  Giles M. Foody,et al.  Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification , 2004 .