Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.

[1]  L. A. Paunescu,et al.  Ultrahigh-resolution optical coherence tomography in glaucoma. , 2005, Ophthalmology.

[2]  Angelika Unterhuber,et al.  Assessment of central visual function in Stargardt's disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[3]  Robert N. Weinreb,et al.  Quantitative assessment of the optic nerve head with the laser tomographic scanner , 2005, International Ophthalmology.

[4]  J. Duker,et al.  Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. , 2004, Ophthalmology.

[5]  Maciej Wojtkowski,et al.  Ophthalmic imaging by spectral optical coherence tomography. , 2004, American journal of ophthalmology.

[6]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[7]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[8]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[9]  Michael D. Ober,et al.  Ophthalmic fundus imaging: today and beyond. , 2004, American journal of ophthalmology.

[10]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[11]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[12]  L. Yannuzzi,et al.  Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy. , 2004, Journal of biomedical optics.

[13]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[14]  Qienyuan Zhou,et al.  Three-dimensional imaging of the human retina by high-speed optical coherence tomography. , 2003, Optics express.

[15]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[16]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[17]  J. Fujimoto,et al.  Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. , 2003, Archives of ophthalmology.

[18]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[19]  Ran Zeimer,et al.  Comparison between retinal thickness analyzer and optical coherence tomography for assessment of foveal thickness in eyes with macular disease , 2003 .

[20]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[21]  James G. Fujimoto,et al.  Ultrahigh resolution optical coherence tomography , 2002 .

[22]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[23]  David A. Jackson,et al.  Three dimensional OCT images from retina and skin. , 2000, Optics express.

[24]  D. Chauhan,et al.  The interpretation of optical coherence tomography images of the retina. , 1999, Investigative ophthalmology & visual science.

[25]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[26]  David A. Jackson,et al.  Combined optical coherence tomograph and scanning laser ophthalmoscope , 1998 .

[27]  E Reichel,et al.  Topography of diabetic macular edema with optical coherence tomography. , 1998, Ophthalmology.

[28]  H. Jampel,et al.  Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. , 1998, Ophthalmology.

[29]  David J. Webb,et al.  Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry. , 1998, Journal of biomedical optics.

[30]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[31]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[32]  J. Fujimoto,et al.  Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. , 1996, Ophthalmology.

[33]  B E Bouma,et al.  Rapid acquisition of in vivo biological images by use of optical coherence tomography. , 1996, Optics letters.

[34]  S. Asrani,et al.  A new method for rapid mapping of the retinal thickness at the posterior pole. , 1996, Investigative ophthalmology & visual science.

[35]  James G. Fujimoto,et al.  Optical Coherence Tomography of Ocular Diseases , 1995 .

[36]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[37]  E A Swanson,et al.  Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. , 1995, Archives of ophthalmology.

[38]  J. Fujimoto,et al.  Optical coherence tomography of the human retina. , 1995, Archives of ophthalmology.

[39]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[40]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[41]  R. Weinreb,et al.  Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. , 1992, Applied optics.

[42]  J. Fujimoto,et al.  High-speed optical coherence domain reflectometry. , 1992, Optics letters.

[43]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[44]  B. Khoobehi,et al.  Feasibility test of a new method to measure retinal thickness noninvasively. , 1989, Investigative ophthalmology & visual science.