Virtual actuator for Lure systems with Lipschitz-continuous nonlinearity

Abstract In this paper, we extend virtual actuators to Lure systems with Lipschitz-continuous nonlinear characteristic. Virtual actuators are used to reconfigure control laws after the occurrence of actuator failures. They have been developed for linear, Hammerstein-Wiener, and piecewise affine systems and are now made available for Lure systems. Lure systems, which consist of linear dynamics with nonlinear internal feedback, are useful for representing, among others, mechanical systems with friction. We provide sufficient stability conditions for the reconfigured closed-loop system that are also useful for finding the virtual actuator parameters, and evaluate the method by means of an example.

[1]  Jan M. Maciejowski,et al.  MPC fault-tolerant flight control case study: flight 1862 , 2003 .

[2]  Michel Kinnaert,et al.  Diagnosis and Fault-tolerant Control, 2nd edition , 2006 .

[3]  W. P. M. H. Heemels,et al.  Observer Design for Lur'e Systems With Multivalued Mappings: A Passivity Approach , 2009, IEEE Transactions on Automatic Control.

[4]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems , 2006 .

[5]  Edmond A. Jonckheere,et al.  Propulsion control of crippled aircraft by H∞ model matching , 1999, IEEE Trans. Control. Syst. Technol..

[6]  M. J. Yazdanpanah,et al.  Reconfigurable control system design using eigenstructure assignment: static, dynamic and robust approaches , 2005 .

[7]  Thomas Steffen,et al.  Control Reconfiguration of Dynamical Systems: Linear Approaches and Structural Tests , 2005 .

[8]  W. Chen,et al.  Adaptive actuator fault detection, isolation and accommodation in uncertain systems , 2007, Int. J. Control.

[9]  Marcel Staroswiecki,et al.  Fault Tolerant Control of the Boeing 747 Short-Period Mode Using the Admissible Model Matching Technique , 2006 .

[10]  Ari Ingimundarson,et al.  Using the Unfalsified Control Concept to achieve Fault Tolerance , 2008 .

[11]  Jakob Stoustrup,et al.  Active Fault Diagnosis by Temporary Destabilization , 2006 .

[12]  José A. De Doná,et al.  Fault tolerant control using virtual actuators and set‐separation detection principles , 2012 .

[13]  Jan H. Richter,et al.  Reconfigurable Control of Nonlinear Dynamical Systems: A fault-hiding Approach , 2011 .

[14]  Panos J. Antsaklis,et al.  Reconfigurable control system design via perfect model following , 1992 .

[15]  A Apostolos Doris,et al.  Output-feedback design for non-smooth mechanical systems : control synthesis and experiments , 2005 .

[16]  Nathan van de Wouw,et al.  Output-feedback control of Lur’e-type systems with set-valued nonlinearities: A Popov-criterion approach , 2008, 2008 American Control Conference.

[17]  Vincent D. Blondel,et al.  Fault tolerant control: a simultaneous stabilization result , 2004, IEEE Transactions on Automatic Control.

[18]  Nathan van de Wouw,et al.  Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities , 2009, Autom..

[19]  Kenneth A. Loparo,et al.  Self-diagnosing intelligent motors: a key enabler for next generation manufacturing systems , 1999 .

[20]  Suresh M. Joshi,et al.  On matching conditions for adaptive state tracking control of systems with actuator failures , 2002, IEEE Trans. Autom. Control..

[21]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2006 .

[22]  José A. De Doná,et al.  Set-based Actuator Fault Diagnosis in Lure Systems , 2012 .

[23]  Thomas Steffen,et al.  Control Reconfiguration After Actuator Failures Using Disturbance Decoupling Methods , 2006, IEEE Transactions on Automatic Control.