On deformations of Fano manifolds

[1]  S. Yau,et al.  Weil-Petersson metrics on deformation spaces , 2020 .

[2]  J. Wavrik Obstructions to the existence of a space of moduli , 2015 .

[3]  G. Tian Kähler–Einstein metrics on Fano manifolds , 2013 .

[4]  S. Donaldson,et al.  Kahler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2\pi\ and completion of the main proof , 2013, 1302.0282.

[5]  S. R. Simanca,et al.  Deformation of extremal metrics, complex manifolds and the relative Futaki invariant , 2011, 1107.0456.

[6]  S. Donaldson,et al.  Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2 , 2012, 1212.4714.

[7]  S. Donaldson,et al.  Kahler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities , 2012, 1211.4566.

[8]  R. Berman K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics , 2012, 1205.6214.

[9]  Xiaofeng Sun Deformation of canonical metrics I , 2012 .

[10]  D. Toledo Hermitian Curvature and Plurisubharmonicity of Energy on Teichmüller Space , 2011, 1104.1786.

[11]  T. Bronnle Deformation constructions of extremal metrics , 2011 .

[12]  Gábor Székelyhidi The Kähler-Ricci flow and K-polystability , 2008, 0803.1613.

[13]  B. Weinkove,et al.  The Kähler–Ricci flow with positive bisectional curvature , 2007, 0706.2852.

[14]  J. Ross,et al.  DELIGNE PAIRINGS AND THE KNUDSEN-MUMFORD EXPANSION , 2006, math/0612555.

[15]  D. Phong,et al.  On stability and the convergence of the Kähler-Ricci flow , 2006 .

[16]  Zhiqin Lu On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch , 2000 .

[17]  S. Zelditch Szego kernels and a theorem of Tian , 2000, math-ph/0002009.

[18]  G. Tian Kähler-Einstein metrics with positive scalar curvature , 1997 .

[19]  Shou-wu Zhang Heights and reductions of semi-stable varieties , 1996 .

[20]  S. R. Simanca,et al.  Extremal Kähler metrics and complex deformation theory , 1994 .

[21]  G. Schumacher The Curvature of the Petersson-Weil Metric on the Moduli Space of Kähler-Einstein Manifolds , 1993 .

[22]  G. Tian On a set of polarized Kähler metrics on algebraic manifolds , 1990 .

[23]  G. Schumacher,et al.  The moduli space of extremal compact Ka¨hler manifolds and generalized Weil-Petersson metrics , 1990 .

[24]  A. Todorov The Weil-Petersson geometry of the moduli space ofSU(n≧3) (Calabi-Yau) manifolds I , 1989 .

[25]  S. Donaldson Geometry of four-manifolds , 1990 .

[26]  S. Yau Nonlinear Analysis In Geometry , 1986 .

[27]  Kunihiko Kodaira,et al.  Complex manifolds and deformation of complex structures , 1985 .

[28]  Eugenio Calabi,et al.  Extremal Kähler Metrics II , 1985 .

[29]  A. Futaki An obstruction to the existence of Einstein Kähler metrics , 1983 .

[30]  N. Koiso Einstein metrics and complex structures , 1983 .

[31]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[32]  D. Mumford,et al.  The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div". , 1976 .

[33]  F. Knudsen,et al.  Projectivity of the moduli space of stable curves , 1976 .

[34]  M. Kuranishi New Proof for the Existence of Locally Complete Families of Complex Structures , 1965 .

[35]  M. Kuranishi On the Locally Complete Families of Complex Analytic Structures , 1962 .

[36]  Yozô Matsushima Sur les Espaces Homogènes Kählériens d’un Groupe de Lie Réductif , 1957, Nagoya Mathematical Journal.

[37]  D. Spencer,et al.  42. On The Variation of Almost-Complex Structure , 1957 .