Channel Identification and Equalization based on Kernel Methods for Downlink Multicarrier-CDMA Systems

In this paper the authors are focused on channel identification and equalization for Multi-Carrier Code Division Multiple Access MC-CDMA system. For this, they identify the impulse response of two practical selective frequency fading channels called Broadband Radio Access Network BRAN A and BRAN B normalized by the European Telecommunications Standards Institute ETSI. To identify the channel parameters, they have the positive definite kernels to build on algorithm. The simulations show that the presented method confirms the good performance for different SNR values. In part of equalization, the authors use the Zero Forcing ZF and Minimum Mean Square Error MMSE equalizers.

[1]  Claude Berrou,et al.  Coded orthogonal frequency division multiplex [TV broadcasting] , 1995, Proc. IEEE.

[2]  Messaoud Hassani,et al.  Supervised equalization of a linear communication channel using Generalized Orthogonal Basis (GOB) , 2009, 2009 6th International Multi-Conference on Systems, Signals and Devices.

[3]  Ángel Belzunegui,et al.  The Telework as an Organizational Innovation in the Entities of the Third Sector , 2014, J. Electron. Commer. Organ..

[4]  Dezhong Peng,et al.  A second-order blind equalization method robust to ill-conditioned SIMO FIR channels , 2014, Digit. Signal Process..

[5]  Abdel-Majid Mourad,et al.  On the System Level Performance of MC-CDMA Systems in the Downlink , 2006 .

[6]  O. Bousquet,et al.  Kernel methods and their potential use in signal processing , 2004, IEEE Signal Processing Magazine.

[7]  Brian M. Sadler,et al.  Estimation and detection in non-Gaussian noise using higher order statistics , 1994, IEEE Trans. Signal Process..

[8]  Stéphane Nobilet Etude et optimisation des techniques MC-CDMA pour les futures générations de systèmes de communications hertziennes , 2003 .

[9]  Antonio Ruiz,et al.  Frequency domain data transmission using reduced computational complexity algorithms , 1980, ICASSP.

[10]  Luis Antonio Azpicueta-Ruiz,et al.  Kernel-based identification of Hammerstein systems for nonlinear acoustic echo-cancellation , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Mohammed M'Saad,et al.  Higher Order Cumulants for Identification and Equalization of Multicarrier Spreading Spectrum Systems , 2010 .

[12]  Lennart Ljung,et al.  Kernel methods in system identification, machine learning and function estimation: A survey , 2014, Autom..

[13]  Jean-Paul M. G. Linnartz,et al.  Multi-Carrier Cdma In Indoor Wireless Radio Networks , 1994 .

[14]  Dezhong Peng,et al.  A new adaptive blind channel identification algorithm , 2009 .

[15]  Arthur Tatnall,et al.  Adoption of Internet Technology by the Banking Industry in Oman: A Study Informed by the Australian Experience , 2008, J. Electron. Commer. Organ..

[16]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[17]  Andrew C. McCormick,et al.  Multicarrier CDMA for future generation mobile communication , 2002 .

[18]  Pierre Comon,et al.  Performance Limits of Alphabet Diversities for FIR SISO Channel Identification , 2009, IEEE Transactions on Signal Processing.

[19]  Donatella Darsena,et al.  Subspace-based blind channel identification of SISO-FIR systems with improper random inputs , 2004, Signal Process..

[20]  B. Floch,et al.  Coded orthogonal frequency division multiplex , 1995 .

[21]  S. Sioutas,et al.  Digital Rights Management for E-Commerce Systems , 2008 .

[22]  Runtong Zhang,et al.  Internet of Things (IoT) Service Architecture and its Application in E-Commerce , 2012, J. Electron. Commer. Organ..

[23]  Werner G. Teich,et al.  Iterative detection algorithms for extended MC-CDMA , 1998, 1988 IEEE 5th International Symposium on Spread Spectrum Techniques and Applications - Proceedings. Spread Technology to Africa (Cat. No.98TH8333).