Spectral Analysis of Saddle-point Matrices from Optimization problems with Elliptic PDE Constraints

The main focus of this paper is the characterization and exploitation of the asymptotic spectrum of the saddle--point matrix sequences arising from the discretization of optimization problems constrained by elliptic partial differential equations. We uncover the existence of a hidden structure in these matrix sequences, namely, we show that these are indeed an example of Generalized Locally Toeplitz (GLT) sequences. We show that this enables a sharper characterization of the spectral properties of such sequences than the one that is available by using only the fact that we deal with saddle--point matrices. Finally, we exploit it to propose an optimal preconditioner strategy for the GMRES, and Flexible-GMRES methods.

[1]  Carlo Garoni,et al.  Generalized locally Toeplitz sequences : Theory and applications , 2017 .

[2]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[3]  Luca Bergamaschi,et al.  On eigenvalue distribution of constraint‐preconditioned symmetric saddle point matrices , 2012, Numer. Linear Algebra Appl..

[4]  Carlo Garoni,et al.  Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .

[5]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[6]  Owe Axelsson,et al.  Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems , 2016, Numerical Algorithms.

[7]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[8]  T. Rees,et al.  Block‐triangular preconditioners for PDE‐constrained optimization , 2010, Numer. Linear Algebra Appl..

[9]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[10]  Stefano Serra Capizzano,et al.  Block Generalized Locally Toeplitz Sequences: From the Theory to the Applications , 2018, Axioms.

[11]  Valeria Simoncini,et al.  Spectral analysis of inexact constraint preconditioning for symmetric saddle point matrices , 2013 .

[12]  Daniele Bertaccini,et al.  Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications , 2018 .

[13]  Andrew J. Wathen,et al.  The Antitriangular Factorization of Saddle Point Matrices , 2014, SIAM J. Matrix Anal. Appl..

[14]  V. Simoncini,et al.  Block--diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 1999 .

[15]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[16]  Nicholas I. M. Gould,et al.  Spectral Analysis of Saddle Point Matrices with Indefinite Leading Blocks , 2009, SIAM J. Matrix Anal. Appl..

[17]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[18]  Fabio Durastante,et al.  Fractional PDE Constrained Optimization: Box and Sparse Constrained Problems , 2018 .

[19]  S. Serra-Capizzano,et al.  Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices , 2018, BIT Numerical Mathematics.

[20]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[21]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[22]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[23]  Owe Axelsson Eigenvalue Estimates for Preconditioned Saddle Point Matrices , 2003, LSSC.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Stefano Serra Capizzano,et al.  Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form? , 2018, Exp. Math..

[26]  Gene H. Golub,et al.  How to Deduce a Proper Eigenvalue Cluster from a Proper Singular Value Cluster in the Nonnormal Case , 2005, SIAM J. Matrix Anal. Appl..

[27]  Michele Benzi,et al.  On the eigenvalues of a class of saddle point matrices , 2006, Numerische Mathematik.

[28]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[29]  Changfeng Ma,et al.  Some preconditioners for elliptic PDE-constrained optimization problems , 2018, Comput. Math. Appl..

[30]  Stefano Serra Capizzano,et al.  Function-based block multigrid strategy for a two-dimensional linear elasticity-type problem , 2017, Comput. Math. Appl..

[31]  Zhong-Zhi Bai,et al.  Block preconditioners for elliptic PDE-constrained optimization problems , 2011, Computing.

[32]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[33]  Luca Bergamaschi,et al.  A note on eigenvalue distribution of constraint‐preconditioned symmetric saddle point matrices , 2014, Numer. Linear Algebra Appl..

[34]  Anders Logg,et al.  FFC: the FEniCS Form Compiler , 2012 .

[35]  Fabio Durastante,et al.  Fractional PDE constrained optimization , 2018 .

[36]  Carlo Garoni,et al.  Spectral Analysis and Spectral Symbol of d-variate $\mathbb Q_{\boldsymbol p}$ Lagrangian FEM Stiffness Matrices , 2015, SIAM J. Matrix Anal. Appl..

[37]  U. Grenader ASYMPTOTIC RESULTS ON THE SPECTRA OF BLOCK TOEPLITZ PRECONDITIONED MATRICES , 1998 .