Local bifurcations of the Chen System

This paper introduces a new practical method for distinguishing chaotic, periodic and quasi-periodic orbits based on a new criterion, and apply it to investigate the local bifurcations of the Chen system. Conditions for supercritical and subcritical bifurcations are obtained, with their parameter domains specified. The analytic results are also verified by numerical simulation studies.

[1]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[2]  Xinghuo Yu,et al.  Detecting unstable periodic orbits in Chen's Chaotic Attractor , 2000, Int. J. Bifurc. Chaos.

[3]  Yang Lin-Bao SAMPLED-DATA FEEDBACK CONTROL FOR CHEN'S CHAOTIC SYSTEM , 2000 .

[4]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[5]  G. Q. Zhong,et al.  Circuitry Implementation and Synchronization of Chen's Attractor , 2002, Int. J. Bifurc. Chaos.

[6]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[7]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[8]  Guanrong Chen,et al.  Chaotification via arbitrarily Small Feedback Controls: Theory, Method, and Applications , 2000, Int. J. Bifurc. Chaos.

[9]  Guanrong Chen,et al.  Controlling in between the Lorenz and the Chen Systems , 2002, Int. J. Bifurc. Chaos.

[10]  Young Hoon Joo,et al.  Output feedback control of Chen's chaotic attractor using fuzzy logic , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[11]  W. Tucker The Lorenz attractor exists , 1999 .

[12]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[13]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[14]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[15]  Jinhu Lu,et al.  Controlling Chen's chaotic attractor using backstepping design based on parameters identification , 2001 .

[16]  H. Agiza,et al.  Synchronization of Rossler and Chen chaotic dynamical systems using active control , 2001, Physics Letters A.

[17]  Jan Awrejcewicz,et al.  Bifurcation and Chaos , 1995 .

[18]  Guanrong Chen,et al.  The Compound Structure of Chen's Attractor , 2002, Int. J. Bifurc. Chaos.

[19]  Guanrong Chen,et al.  Dynamical Analysis of a New Chaotic Attractor , 2002, Int. J. Bifurc. Chaos.