Asymptotic theory for Brownian semi-stationary processes with application to turbulence
暂无分享,去创建一个
Mark Podolskij | Mikko S. Pakkanen | Emil Hedevang | J. M. Corcuera | M. Podolskij | Jos'e Manuel Corcuera | Emil Hedevang
[1] A. N. Kolmogorov. Equations of turbulent motion in an incompressible fluid , 1941 .
[2] David Aldous,et al. On Mixing and Stability of Limit Theorems , 1978 .
[3] M. Taqqu. Convergence of integrated processes of arbitrary Hermite rank , 1979 .
[4] P. Major,et al. Central limit theorems for non-linear functionals of Gaussian fields , 1983 .
[5] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[6] X. Guyon,et al. Convergence en loi des H-variations d'un processus gaussien stationnaire sur R , 1989 .
[7] A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[8] Smith,et al. Energy spectrum of homogeneous and isotropic turbulence in far dissipation range. , 1995, Physical review letters.
[9] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[10] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[11] F. Roueff,et al. Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates , 2001 .
[12] O. Barndorff-Nielsen,et al. Lévy-based Tempo-Spatial Modelling; with Applications to Turbulence , 2003 .
[13] O. Barndorff-Nielsen,et al. Lévy-based spatial-temporal modelling, with applications to turbulence , 2004 .
[14] Jean Jacod,et al. A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .
[15] G. Peccati,et al. Gaussian Limits for Vector-valued Multiple Stochastic Integrals , 2005 .
[16] F. Viens,et al. Skorohod integration and stochastic calculus beyond the fractional Brownian scale , 2005 .
[17] Giovanni Peccati,et al. Central limit theorems for sequences of multiple stochastic integrals , 2005 .
[18] Power variation of some integral fractional processes , 2006 .
[19] Jean Jacod,et al. Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.
[20] D. Nualart,et al. Central and non-central limit theorems for weighted power variations of fractional brownian motion , 2007, 0710.5639.
[21] Ole E. Barndorff-Nielsen,et al. Ambit Processes; with Applications to Turbulence and Tumour Growth , 2007 .
[22] David Nualart,et al. Central limit theorems for multiple stochastic integrals and Malliavin calculus , 2007 .
[23] Power variation for Gaussian processes with stationary increments , 2009 .
[24] Ole E. Barndorff-Nielsen,et al. Time Change, Volatility, and Turbulence , 2008 .
[25] Stig Larsson,et al. Introduction to stochastic partial differential equations , 2008 .
[26] Ole E. Barndorff-Nielsen,et al. A Stochastic Differential Equation Framework for the Timewise Dynamics of Turbulent Velocities , 2008 .
[27] A. Basse. Gaussian Moving Averages and Semimartingales , 2008 .
[28] Mark Podolskij,et al. Limit Theorems for Functionals of Higher Order Differences of Brownian Semi-Stationary Processes , 2009 .
[29] Mark Podolskij,et al. Understanding Limit Theorems for Semimartingales: A Short Survey , 2009 .
[30] Mark Podolskij,et al. Multipower Variation for Brownian Semistationary Processes , 2009, 1201.0868.
[31] W. Schachermayer,et al. Brownian semistationary processes and volatility/intermittency , 2009 .