Asymptotic theory for Brownian semi-stationary processes with application to turbulence

[1]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[2]  David Aldous,et al.  On Mixing and Stability of Limit Theorems , 1978 .

[3]  M. Taqqu Convergence of integrated processes of arbitrary Hermite rank , 1979 .

[4]  P. Major,et al.  Central limit theorems for non-linear functionals of Gaussian fields , 1983 .

[5]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[6]  X. Guyon,et al.  Convergence en loi des H-variations d'un processus gaussien stationnaire sur R , 1989 .

[7]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[8]  Smith,et al.  Energy spectrum of homogeneous and isotropic turbulence in far dissipation range. , 1995, Physical review letters.

[9]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[10]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[11]  F. Roueff,et al.  Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates , 2001 .

[12]  O. Barndorff-Nielsen,et al.  Lévy-based Tempo-Spatial Modelling; with Applications to Turbulence , 2003 .

[13]  O. Barndorff-Nielsen,et al.  Lévy-based spatial-temporal modelling, with applications to turbulence , 2004 .

[14]  Jean Jacod,et al.  A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .

[15]  G. Peccati,et al.  Gaussian Limits for Vector-valued Multiple Stochastic Integrals , 2005 .

[16]  F. Viens,et al.  Skorohod integration and stochastic calculus beyond the fractional Brownian scale , 2005 .

[17]  Giovanni Peccati,et al.  Central limit theorems for sequences of multiple stochastic integrals , 2005 .

[18]  Power variation of some integral fractional processes , 2006 .

[19]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[20]  D. Nualart,et al.  Central and non-central limit theorems for weighted power variations of fractional brownian motion , 2007, 0710.5639.

[21]  Ole E. Barndorff-Nielsen,et al.  Ambit Processes; with Applications to Turbulence and Tumour Growth , 2007 .

[22]  David Nualart,et al.  Central limit theorems for multiple stochastic integrals and Malliavin calculus , 2007 .

[23]  Power variation for Gaussian processes with stationary increments , 2009 .

[24]  Ole E. Barndorff-Nielsen,et al.  Time Change, Volatility, and Turbulence , 2008 .

[25]  Stig Larsson,et al.  Introduction to stochastic partial differential equations , 2008 .

[26]  Ole E. Barndorff-Nielsen,et al.  A Stochastic Differential Equation Framework for the Timewise Dynamics of Turbulent Velocities , 2008 .

[27]  A. Basse Gaussian Moving Averages and Semimartingales , 2008 .

[28]  Mark Podolskij,et al.  Limit Theorems for Functionals of Higher Order Differences of Brownian Semi-Stationary Processes , 2009 .

[29]  Mark Podolskij,et al.  Understanding Limit Theorems for Semimartingales: A Short Survey , 2009 .

[30]  Mark Podolskij,et al.  Multipower Variation for Brownian Semistationary Processes , 2009, 1201.0868.

[31]  W. Schachermayer,et al.  Brownian semistationary processes and volatility/intermittency , 2009 .