Effects of notch position of the Charpy impact specimen on the failure behavior in heat affected zone

[1]  Viggo Tvergaard,et al.  3D analyses of the effect of weld orientation in Charpy specimens , 2004 .

[2]  D. Klingbeil,et al.  The calculation of dynamic JR-curves from 2D and 3D finite element analyses of a Charpy test using a rate-dependent damage model , 2002 .

[3]  D. Klingbeil,et al.  The calculation of dynamic JR-curves from the finite element analysis of a Charpy test using a rate-dependent damage model , 2000 .

[4]  Viggo Tvergaard,et al.  Analysis of the Charpy V-notch test for welds , 2000 .

[5]  F. M. Burdekin,et al.  Application of coupled brittle–ductile model to study correlation between Charpy energy and fracture toughness values , 1999 .

[6]  Zhiliang Zhang,et al.  Application of local approach to inhomogeneous welds. Influence of crack position and strength mismatch , 1999 .

[7]  J. H. Kim,et al.  Notch position in the HAZ specimen of reactor pressure vessel steel , 1998 .

[8]  R. Taillard,et al.  Effect of silicon on CGHAZ toughness and microstructure of microalloyed steels , 1995 .

[9]  Alan Needleman,et al.  3D analysis of failure modes in the Charpy impact test , 1994 .

[10]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[11]  A. Needleman,et al.  Effect of material rate sensitivity on failure modes in the Charpy V-notch test , 1986 .

[12]  Viggo Tvergaard,et al.  Influence of void nucleation on ductile shear fracture at a free surface , 1982 .

[13]  S. Bent Russell,et al.  Experiments with A New Machine for Testing Materials Impact , 1898 .