The role of grain boundaries in perovskite solar cells

[1]  Kai Zhu,et al.  Perovskite ink with wide processing window for scalable high-efficiency solar cells , 2017, Nature Energy.

[2]  M. Kanatzidis,et al.  High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16 , 2017 .

[3]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[4]  Jinsong Huang,et al.  Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films , 2017 .

[5]  Dong Hoe Kim,et al.  Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films? , 2017, Physical chemistry chemical physics : PCCP.

[6]  N. Park,et al.  Impact of Excess CH3NH3I on Free Carrier Dynamics in High-Performance Nonstoichiometric Perovskites , 2017 .

[7]  Kai Zhu,et al.  Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films , 2017, Nature Energy.

[8]  P. Rieder,et al.  Improved charge carrier lifetime in planar perovskite solar cells by bromine doping , 2016, Scientific Reports.

[9]  J. Bisquert,et al.  Dynamic Phenomena at Perovskite/Electron-Selective Contact Interface as Interpreted from Photovoltage Decays , 2016 .

[10]  Jinsong Huang,et al.  Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. , 2016, Physical chemistry chemical physics : PCCP.

[11]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[12]  H. Snaith,et al.  Light-induced annihilation of Frenkel defects in organo-lead halide perovskites , 2016 .

[13]  Chien-Hung Chiang,et al.  Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells. , 2016, ChemSusChem.

[14]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[15]  Gang Li,et al.  Printable Solar Cells from Advanced Solution-Processible Materials , 2016 .

[16]  N. Park Crystal growth engineering for high efficiency perovskite solar cells , 2016 .

[17]  Dong Hoe Kim,et al.  Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening , 2016, Nature Communications.

[18]  D. F. Ogletree,et al.  Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite , 2016, Nature Energy.

[19]  D. Mitzi,et al.  Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells , 2016, Advanced materials.

[20]  M. Green,et al.  Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells , 2016 .

[21]  Seonhee Lee,et al.  Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells , 2016, Nature Energy.

[22]  Jinsong Huang,et al.  Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films , 2016 .

[23]  O. Prezhdo,et al.  Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation. , 2016, Journal of the American Chemical Society.

[24]  X. Tao,et al.  Formation of Hybrid Perovskite Tin Iodide Single Crystals by Top-Seeded Solution Growth. , 2016, Angewandte Chemie.

[25]  Gang Li,et al.  Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties , 2016, Advanced materials.

[26]  S. Meloni,et al.  Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells , 2016, Nature Communications.

[27]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[28]  Yang Yang,et al.  Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. , 2016, Nano letters.

[29]  M. Green,et al.  Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites , 2016 .

[30]  Nam-Gyu Park,et al.  Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. , 2016, Accounts of chemical research.

[31]  Wei Zhang,et al.  Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells , 2015, Nature Communications.

[32]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[33]  Seong Min Kang,et al.  Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on photovoltaic performance of perovskite solar cells , 2015 .

[34]  Keitaro Sodeyama,et al.  First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. , 2015, Journal of the American Chemical Society.

[35]  Qingfeng Dong,et al.  Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond? , 2015 .

[36]  N. Park,et al.  Two-step deposition method for high-efficiency perovskite solar cells , 2015 .

[37]  N. Park,et al.  On the Role of Interfaces in Planar-Structured HC(NH2 )2 PbI3 Perovskite Solar Cells. , 2015, ChemSusChem.

[38]  Alain Goriely,et al.  High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization , 2015, Nature Communications.

[39]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[40]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[41]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[42]  Yang Yang,et al.  The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells , 2015, Nature Communications.

[43]  Suhuai Wei,et al.  Origin of High Electronic Quality in Structurally Disordered CH3NH3PbI3 and the Passivation Effect of Cl and O at Grain Boundaries , 2015 .

[44]  W. Sha,et al.  The efficiency limit of CH3NH3PbI3 perovskite solar cells , 2015, 1506.09003.

[45]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[46]  Su-Huai Wei,et al.  Halide perovskite materials for solar cells: a theoretical review , 2015 .

[47]  N. Park,et al.  15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 , 2015 .

[48]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[49]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[50]  M. Green,et al.  Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[51]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[52]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[53]  Qi Chen,et al.  The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. , 2015, Physical chemistry chemical physics : PCCP.

[54]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[55]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[56]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[57]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[58]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[59]  Kun Zhang,et al.  Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition , 2014 .

[60]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[61]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[62]  Nam-Gyu Park,et al.  Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3 , 2014 .

[63]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[64]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[65]  Nam-Gyu Park,et al.  Rutile TiO2-based perovskite solar cells , 2014 .

[66]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[67]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[68]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[69]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[70]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[71]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[72]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[73]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[74]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[75]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[76]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[77]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[78]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[79]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[80]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[81]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[82]  A. Aberle,et al.  V/sub oc/ improvement of evaporated SPC thin-film Si solar cells on glass by rapid thermal annealing , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[83]  J. Pankow,et al.  Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films , 2004 .

[84]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[85]  Warren B. Jackson,et al.  Hydrogen passivation of grain boundary defects in polycrystalline silicon thin films , 1993 .

[86]  M. Green,et al.  Bene fi t of Grain Boundaries in Organic − Inorganic Halide Planar Perovskite Solar Cells , 2015 .

[87]  Yang Liu,et al.  Bulk crystal growth of hybrid perovskite material CH3NH3PbI3 , 2015 .

[88]  N. Park,et al.  76 % Efficiency Perovskite Solar Cell Prepared under High Relative Humidity : Importance of PbI 2 Morphology in Two-Step Deposition of CH 3 NH 3 PbI 3 , 2015 .