Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework

We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed “double cluster” (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal–organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal–organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.

[1]  Hua Zhang,et al.  Two‐Dimensional Metal–Organic Framework Nanosheets , 2017 .

[2]  N. Stock,et al.  Water-based synthesis and characterisation of a new Zr-MOF with a unique inorganic building unit. , 2016, Chemical communications.

[3]  A. Cheetham,et al.  Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets. , 2016, Chemical communications.

[4]  Haoshen Zhou,et al.  Metal–organic framework-based separator for lithium–sulfur batteries , 2016, Nature Energy.

[5]  Sachin Chavan,et al.  Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis , 2016 .

[6]  A. Matzger,et al.  Toward Topology Prediction in Zr-Based Microporous Coordination Polymers: The Role of Linker Geometry and Flexibility , 2016 .

[7]  L. Long,et al.  Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts. , 2016, Angewandte Chemie.

[8]  R. Tilley Perovskites: Structure-Property Relationships , 2016 .

[9]  Hiroaki Maeda,et al.  Coordination Programming of Two-Dimensional Metal Complex Frameworks. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[10]  W. Tremel,et al.  A chemists view: Metal oxides with adaptive structures for thermoelectric applications , 2016 .

[11]  François-Xavier Coudert,et al.  Defects and disorder in metal organic frameworks. , 2016, Dalton transactions.

[12]  Yuerui Lu,et al.  Two-Dimensional CH₃NH₃PbI₃ Perovskite: Synthesis and Optoelectronic Application. , 2016, ACS nano.

[13]  A. Cheetham,et al.  In Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[14]  J. Hupp,et al.  Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration , 2016 .

[15]  Sanliang Ling,et al.  Dynamic acidity in defective UiO-66 , 2015, Chemical science.

[16]  Hua Zhang,et al.  Ultrathin 2D Metal–Organic Framework Nanosheets , 2015, Advanced materials.

[17]  R. Fischer,et al.  Defect-Engineered Metal–Organic Frameworks , 2015, Angewandte Chemie.

[18]  C. Serre,et al.  Impact of the Nature of the Organic Spacer on the Crystallization Kinetics of UiO-66(Zr)-Type MOFs. , 2015, Chemistry.

[19]  J. Čejka,et al.  Exploiting chemically selective weakness in solids as a route to new porous materials. , 2015, Nature chemistry.

[20]  Michael Drakopoulos,et al.  I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source , 2015, Journal of synchrotron radiation.

[21]  Olof Svensson,et al.  Data Analysis WorkbeNch (DAWN) , 2015, Journal of synchrotron radiation.

[22]  D. D’Alessandro,et al.  The first example of a zirconium-oxide based metal-organic framework constructed from monocarboxylate ligands. , 2015, Dalton transactions.

[23]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[24]  M. Vandichel,et al.  Active site engineering in UiO-66 type metal-organic frameworks by intentional creation of defects: a theoretical rationalization , 2015 .

[25]  Carlo Lamberti,et al.  Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal‒Organic Frameworks , 2014 .

[26]  M. Muhler,et al.  Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties. , 2014, Angewandte Chemie.

[27]  François-Xavier Coudert,et al.  Correlated Defect Nano-Regions in a Metal–Organic Framework , 2014, Nature Communications.

[28]  Wuzong Zhou,et al.  Microstructural study of the formation mechanism of metal–organic framework MOF-5 , 2014 .

[29]  O. Konovalov,et al.  Interfacial growth of large-area single-layer metal-organic framework nanosheets , 2013, Scientific Reports.

[30]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[31]  Ping Chen,et al.  Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. , 2013, Journal of the American Chemical Society.

[32]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[33]  Petr Nachtigall,et al.  A family of zeolites with controlled pore size prepared using a top-down method. , 2013, Nature chemistry.

[34]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[35]  R. Cava Crystal structures of the high temperature forms of V{sub 8}O{sub 15} and V{sub 9}O{sub 17} and structural trends in the V{sub n}O{sub 2n-1} Magneli series , 2013 .

[36]  William R. Dichtel,et al.  Mixed linker strategies for organic framework functionalization. , 2013, Chemistry.

[37]  Simon J. L. Billinge,et al.  PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions , 2012, 1211.7126.

[38]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[39]  Christian Serre,et al.  A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. , 2012, Angewandte Chemie.

[40]  N. Vranjes,et al.  The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction. , 2012, The Review of scientific instruments.

[41]  A. Frenkel,et al.  Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. , 2012, Angewandte Chemie.

[42]  Duilio Cascio,et al.  Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. , 2012, Inorganic chemistry.

[43]  P. Behrens,et al.  Modulated synthesis of Zr-fumarate MOF , 2012 .

[44]  Seth M. Cohen,et al.  Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks , 2012 .

[45]  L. Francis,et al.  Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane , 2011, Science.

[46]  C. Tang,et al.  Fast X-ray powder diffraction on I11 at Diamond. , 2011, Journal of synchrotron radiation.

[47]  Peter Behrens,et al.  Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. , 2011, Chemistry.

[48]  Manfred Speldrich,et al.  Heterometal expansion of oxozirconium carboxylate clusters. , 2011, Dalton transactions.

[49]  A. Soper GudrunN and GudrunX : programs for correcting raw neutron and X-ray diffraction data to differential scattering cross section , 2011 .

[50]  R. Ruoff,et al.  Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. , 2010, Angewandte Chemie.

[51]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[52]  J. Parker,et al.  Beamline I11 at Diamond: a new instrument for high resolution powder diffraction. , 2009, The Review of scientific instruments.

[53]  T. Tatsumi,et al.  Effect of Al/Si Substitutions and Silanol Nests on the Local Geometry of Si and Al Framework Sites in Silicone-Rich Zeolites: A Combined High Resolution 27Al and 29Si NMR and Density Functional Theory/Molecular Mechanics Study , 2009 .

[54]  Susumu Kitagawa,et al.  Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. , 2009, Angewandte Chemie.

[55]  A. Wojtczak,et al.  Synthesis, structure characterization and thermal properties of [Zr6(μ3-O)4(μ3-OH)4(OOCCH2tBu)9(μ2-OH)3]2 , 2009 .

[56]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[57]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[58]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[59]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[60]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[61]  Guozhen Zhang,et al.  Preparation and Characterization of a Transparent Thin Film of the Layered Perovskite, K2La2Ti3O10, Intercalated with an Ionic Porphyrin , 2005 .

[62]  T. Sasaki,et al.  Restacked Perovskite Nanosheets and Their Pt-Loaded Materials as Photocatalysts , 2002 .

[63]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[64]  A. Gualtieri Synthesis of sodium zeolites from a natural halloysite , 2001 .

[65]  K. S. Aleksandrov,et al.  Hierarchies of perovskite-like crystals (Review) , 1997 .

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  Michael Treacy,et al.  Electron Microscopy Study of Delamination in Dispersions of the Perovskite-Related Layered Phases K[Ca2Nan−3NbnO3n+1]: Evidence for Single-Layer Formation , 1990 .

[68]  G. S. Pawley,et al.  Unit-cell refinement from powder diffraction scans , 1981 .

[69]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[70]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[71]  S. Andersson,et al.  A Homologous Series of Mixed Titanium Chromium Oxides Ti(n-2)Cr2O(2n-1) Isomorphous with the Series Ti(n)O(2n-1) and V(n)O(2n-1). , 1959 .

[72]  B. Warren X-Ray Diffraction in Random Layer Lattices , 1941 .