Synthetic principles directing charge transport in low-band-gap dithienosilole-benzothiadiazole copolymers.

Given the fundamental differences in carrier generation and device operation in organic thin-film transistors (OTFTs) and organic photovoltaic (OPV) devices, the material design principles to apply may be expected to differ. In this respect, designing organic semiconductors that perform effectively in multiple device configurations remains a challenge. Following "donor-acceptor" principles, we designed and synthesized an analogous series of solution-processable π-conjugated polymers that combine the electron-rich dithienosilole (DTS) moiety, unsubstituted thiophene spacers, and the electron-deficient core 2,1,3-benzothiadiazole (BTD). Insights into backbone geometry and wave function delocalization as a function of molecular structure are provided by density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level. Using a combination of X-ray techniques (2D-WAXS and XRD) supported by solid-state NMR (SS-NMR) and atomic force microscopy (AFM), we demonstrate fundamental correlations between the polymer repeat-unit structure, molecular weight distribution, nature of the solubilizing side-chains appended to the backbones, and extent of structural order attainable in p-channel OTFTs. In particular, it is shown that the degree of microstructural order achievable in the self-assembled organic semiconductors increases largely with (i) increasing molecular weight and (ii) appropriate solubilizing-group substitution. The corresponding field-effect hole mobilities are enhanced by several orders of magnitude, reaching up to 0.1 cm(2) V(-1) s(-1) with the highest molecular weight fraction of the branched alkyl-substituted polymer derivative in this series. This trend is reflected in conventional bulk-heterojunction OPV devices using PC(71)BM, whereby the active layers exhibit space-charge-limited (SCL) hole mobilities approaching 10(-3) cm(2) V(-1) s(-1), and yield improved power conversion efficiencies on the order of 4.6% under AM1.5G solar illumination. Beyond structure-performance correlations, we observe a large dependence of the ionization potentials of the polymers estimated by electrochemical methods on polymer packing, and expect that these empirical results may have important consequences on future material study and device applications.

[1]  Shinuk Cho,et al.  Higher Molecular Weight Leads to Improved Photoresponsivity, Charge Transport and Interfacial Ordering in a Narrow Bandgap Semiconducting Polymer , 2010 .

[2]  Mats Andersson,et al.  Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends , 2006 .

[3]  A. Salleo,et al.  Microstructural Origin of High Mobility in High‐Performance Poly(thieno‐thiophene) Thin‐Film Transistors , 2010, Advanced materials.

[4]  A. L. Dyer,et al.  Navigating the Color Palette of Solution-Processable Electrochromic Polymers† , 2011 .

[5]  J. Reynolds,et al.  Spray‐Processable Blue‐to‐Highly Transmissive Switching Polymer Electrochromes via the Donor–Acceptor Approach , 2010, Advanced materials.

[6]  Hans Wynberg,et al.  Alternate donor-acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines , 1993 .

[7]  Hansen Absolute half-cell potential: A simple direct measurement. , 1987, Physical review. A, General physics.

[8]  S. D. Hudson,et al.  In‐Plane Liquid Crystalline Texture of High‐Performance Thienothiophene Copolymer Thin Films , 2010 .

[9]  A. Facchetti,et al.  Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. , 2006, Journal of the American Chemical Society.

[10]  J. Reynolds,et al.  Color control in pi-conjugated organic polymers for use in electrochromic devices. , 2010, Chemical reviews.

[11]  K. Müllen,et al.  Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells , 2006 .

[12]  V. Mihailetchi,et al.  Compositional dependence of the performance of poly(p-phenylene vinylene) , 2005 .

[13]  P. Adriaensens,et al.  Efficient formation, isolation and characterization of poly(3-alkylthiophene) nanofibres: probing order as a function of side-chain length , 2009 .

[14]  K. Müllen,et al.  Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. , 2007, Journal of the American Chemical Society.

[15]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[16]  R. J. Kline,et al.  Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin‐Film Organic Transistors , 2009 .

[17]  A. Pines,et al.  Quantification of the disorder in network-modified silicate glasses , 1992, Nature.

[18]  Christopher D. Simpson,et al.  Relationship between core size, side chain length, and the supramolecular organization of polycyclic aromatic hydrocarbons , 2005 .

[19]  Thuc-Quyen Nguyen,et al.  Small Molecule Solution-Processed Bulk Heterojunction Solar Cells† , 2011 .

[20]  Luping Yu,et al.  When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance , 2010, Advanced materials.

[21]  Klaus Müllen,et al.  Improving polymer transistor performance via morphology control. , 2010, Chemical Society reviews.

[22]  D. Demco,et al.  Broadband multiple-quantum NMR spectroscopy , 1996 .

[23]  R. Youngman,et al.  Short-and Intermediate-Range Structural Ordering in Glassy Boron Oxide , 1995, Science.

[24]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[25]  Albert Rose,et al.  Double Extraction of Uniformly Generated Electron‐Hole Pairs from Insulators with Noninjecting Contacts , 1971 .

[26]  A. Arias,et al.  Materials and applications for large area electronics: solution-based approaches. , 2010, Chemical reviews.

[27]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[28]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[29]  M. Ratner,et al.  Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. Experiment and theory. , 2008, Journal of the American Chemical Society.

[30]  William J. Potscavage,et al.  Critical interfaces in organic solar cells and their influence on the open-circuit voltage. , 2009, Accounts of chemical research.

[31]  Steven P. Brown,et al.  Probing proton-proton proximities in the solid state , 2007 .

[32]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[33]  Jean Roncali,et al.  Molecular bulk heterojunctions: an emerging approach to organic solar cells. , 2009, Accounts of chemical research.

[34]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[35]  Mm Martijn Wienk,et al.  Electron Transport in a Methanofullerene , 2003 .

[36]  Roberta Pierattelli,et al.  Band-selective 1H-13C cross-polarization in fast magic angle spinning solid-state NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[37]  Mm Martijn Wienk,et al.  Narrow‐Bandgap Diketo‐Pyrrolo‐Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance , 2008 .

[38]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[39]  Alexander Pines,et al.  Proton‐enhanced NMR of dilute spins in solids , 1973 .

[40]  Prashant Sonar,et al.  A High Mobility P‐Type DPP‐Thieno[3,2‐b]thiophene Copolymer for Organic Thin‐Film Transistors , 2010, Advanced materials.

[41]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[42]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[43]  S. W. Thomas,et al.  Chemical sensors based on amplifying fluorescent conjugated polymers. , 2007, Chemical reviews.

[44]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[45]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[46]  J. Reynolds,et al.  The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. , 2008, Nature materials.

[47]  R. Hayward,et al.  Structure of a surfactant-templated silicate framework in the absence of 3d crystallinity. , 2004, Journal of the American Chemical Society.

[48]  J. D’Haen,et al.  Effect of Alkyl Side‐Chain Length on Photovoltaic Properties of Poly(3‐alkylthiophene)/PCBM Bulk Heterojunctions , 2009 .

[49]  K. Müllen,et al.  Tailoring structure-property relationships in dithienosilole-benzothiadiazole donor-acceptor copolymers. , 2009, Journal of the American Chemical Society.

[50]  M. Leclerc,et al.  A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications , 2009 .

[51]  M. Toney,et al.  Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. , 2009, Nano letters.

[52]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[53]  P. Sautet,et al.  Characterizing slight structural disorder in solids by combined solid-state NMR and first principles calculations. , 2009, The journal of physical chemistry. A.

[54]  P. Sonar,et al.  A Low‐Bandgap Diketopyrrolopyrrole‐Benzothiadiazole‐Based Copolymer for High‐Mobility Ambipolar Organic Thin‐Film Transistors , 2010, Advanced materials.

[55]  P. Blom,et al.  Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. , 2003, Physical review letters.

[56]  J. Reynolds,et al.  Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. , 2010, Accounts of chemical research.

[57]  Yang Yang,et al.  Silicon Atom Substitution Enhances Interchain Packing in a Thiophene‐Based Polymer System , 2010, Advanced materials.

[58]  Yong Cao,et al.  Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. , 2009, Accounts of chemical research.

[59]  A. W. Addison,et al.  Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C , 2000 .

[60]  Valentin D. Mihailetchi,et al.  Hole Transport in Poly(phenylene vinylene)/Methanofullerene Bulk‐Heterojunction Solar Cells , 2004 .

[61]  Robert Graf,et al.  Ultrahigh mobility in polymer field-effect transistors by design. , 2011, Journal of the American Chemical Society.

[62]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[63]  K. Müllen,et al.  The Influence of Morphology on High‐Performance Polymer Field‐Effect Transistors , 2009 .

[64]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[65]  J. Reynolds,et al.  Spray Processable Green to Highly Transmissive Electrochromics via Chemically Polymerizable Donor–Acceptor Heterocyclic Pentamers , 2008, Advanced materials.

[66]  Antonio Facchetti,et al.  n-Channel semiconductor materials design for organic complementary circuits. , 2011, Accounts of chemical research.

[67]  J. Fréchet,et al.  Organic semiconducting oligomers for use in thin film transistors. , 2007, Chemical reviews.

[68]  H. Sirringhaus,et al.  Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. , 2011, Journal of the American Chemical Society.

[69]  R. Graf,et al.  Structure of crystalline phosphates from P-31 double-quantum NMR spectroscopy , 1996 .

[70]  Wei You,et al.  Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymer−Fullerene Solar Cells , 2010 .

[71]  D. D. de Leeuw,et al.  Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer , 2010, Advanced materials.

[72]  Fred Wudl,et al.  Organic electronics from perylene to organic photovoltaics: painting a brief history with a broad brush , 2010 .

[73]  M. McGehee,et al.  Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene) , 2008 .

[74]  Zhengguo Zhu,et al.  Influence of the Bridging Atom on the Performance of a Low‐Bandgap Bulk Heterojunction Solar Cell , 2010, Advanced materials.

[75]  O. Inganäs,et al.  Influence of Molecular Weight on the Performance of Organic Solar Cells Based on a Fluorene Derivative , 2010 .

[76]  Gregory C. Welch,et al.  Band gap control in conjugated oligomers via Lewis acids. , 2009, Journal of the American Chemical Society.

[77]  H. Spiess,et al.  Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. , 2001, Chemical reviews.

[78]  Hans Wynberg,et al.  A new class of small band gap organic polymer conductors , 1992 .

[79]  Seth R. Marder,et al.  n‐Type Organic Semiconductors in Organic Electronics , 2010, Advanced materials.