The home-range concept: are traditional estimators still relevant with modern telemetry technology?

Recent advances in animal tracking and telemetry technology have allowed the collection of location data at an ever-increasing rate and accuracy, and these advances have been accompanied by the development of new methods of data analysis for portraying space use, home ranges and utilization distributions. New statistical approaches include data-intensive techniques such as kriging and nonlinear generalized regression models for habitat use. In addition, mechanistic home-range models, derived from models of animal movement behaviour, promise to offer new insights into how home ranges emerge as the result of specific patterns of movements by individuals in response to their environment. Traditional methods such as kernel density estimators are likely to remain popular because of their ease of use. Large datasets make it possible to apply these methods over relatively short periods of time such as weeks or months, and these estimates may be analysed using mixed effects models, offering another approach to studying temporal variation in space-use patterns. Although new technologies open new avenues in ecological research, our knowledge of why animals use space in the ways we observe will only advance by researchers using these new technologies and asking new and innovative questions about the empirical patterns they observe.

[1]  Mark S Boyce,et al.  Correlation and studies of habitat selection: problem, red herring or opportunity? , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[2]  Wayne M. Getz,et al.  A local nearest-neighbor convex-hull construction of home ranges and utilization distributions , 2004 .

[3]  P. Moorcroft,et al.  Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis , 2007, Journal of mathematical biology.

[4]  Patrick E. Osborne,et al.  Should data be partitioned spatially before building large-scale distribution models? , 2002 .

[5]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[6]  R. Powell,et al.  Effects of Scale on Habitat Selection and Foraging Behavior of Fishers in Winter , 1994 .

[7]  B. Manly,et al.  Resource selection by animals: statistical design and analysis for field studies. , 1994 .

[8]  Michael S. Mitchell,et al.  Test of a habitat suitability index for black bears in the southern Appalachians , 2002 .

[9]  Ernest Thompson Seton,et al.  Life Histories of Northern Animals an Account of the Mammals of Manitoba , 1974 .

[10]  Paul R Moorcroft,et al.  Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone , 2006, Proceedings of the Royal Society B: Biological Sciences.

[11]  Jean-Michel Gaillard,et al.  Roe deer Capreolus capreolus home-range sizes estimated from VHF and GPS data , 2008 .

[12]  Paul R Moorcroft,et al.  Stochastic modelling of animal movement , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  R. Jennrich,et al.  Measurement of non-circular home range. , 1969, Journal of theoretical biology.

[14]  Joshua J. Millspaugh,et al.  RELATING RESOURCES TO A PROBABILISTIC MEASURE OF SPACE USE: FOREST FRAGMENTS AND STELLER'S JAYS , 2004 .

[15]  Markus Neteler,et al.  Wildlife tracking data management: a new vision , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  G. Pflug Kernel Smoothing. Monographs on Statistics and Applied Probability - M. P. Wand; M. C. Jones. , 1996 .

[17]  J. Kie,et al.  Herbivore Optimization by North American Elk: Consequences for Theory and Management , 2006 .

[18]  Stephen M. Krone,et al.  Analyzing animal movements using Brownian bridges. , 2007, Ecology.

[19]  P. Moorcroft,et al.  Mechanistic home range analysis , 2006 .

[20]  B. Worton Kernel methods for estimating the utilization distribution in home-range studies , 1989 .

[21]  David W. Macdonald,et al.  WHAT GROUNDS SOME BIRDS FOR LIFE? MOVEMENT AND DIVING IN THE SEXUALLY DIMORPHIC GALÁPAGOS CORMORANT , 2008 .

[22]  Jason Matthiopoulos,et al.  The interpretation of habitat preference metrics under use–availability designs , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  John W. Zimmerman,et al.  Ecology and Behaviour of North American Black Bears: Home Ranges, Habitat and Social Organization , 1996 .

[24]  K. Berger,et al.  Does interference competition with wolves limit the distribution and abundance of coyotes? , 2007, The Journal of animal ecology.

[25]  R. Bonduriansky,et al.  Eliminating autocorrelation reduces biological relevance of home range estimates , 1999 .

[26]  Hugh P. Possingham,et al.  A SPATIALLY EXPLICIT HABITAT SELECTION MODEL INCORPORATING HOME RANGE BEHAVIOR , 2005 .

[27]  John Fieberg,et al.  Kernel density estimators of home range: smoothing and the autocorrelation red herring. , 2007, Ecology.

[28]  Sheng-You Huang,et al.  Random walk with memory enhancement and decay. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Greg A Breed,et al.  Sexual segregation of seasonal foraging habitats in a non-migratory marine mammal , 2006, Proceedings of the Royal Society B: Biological Sciences.

[30]  Trevor Hastie,et al.  Generalized linear and generalized additive models in studies of species distributions: setting the scene , 2002 .

[31]  Subhash R Lele,et al.  Weighted distributions and estimation of resource selection probability functions. , 2006, Ecology.

[32]  T. Bailey Spatial Analysis: A Guide for Ecologists , 2006 .

[33]  Paul R. Moorcroft,et al.  Home range analysis using a mechanistic home range model , 1999 .

[34]  Paul R Moorcroft,et al.  Mechanistic home range models and resource selection analysis: a reconciliation and unification. , 2006, Ecology.

[35]  Martin A. Schwartz,et al.  The importance of stupidity in scientific research , 2008, Journal of Cell Science.

[36]  James E. Dunn,et al.  Analysis of Radio Telemetry Data in Studies of Home Range , 1977 .

[37]  Benjamin D. Dalziel,et al.  Fitting Probability Distributions to Animal Movement Trajectories: Using Artificial Neural Networks to Link Distance, Resources, and Memory , 2008, The American Naturalist.

[38]  Jason Matthiopoulos Model-supervised kernel smoothing for the estimation of spatial usage , 2003 .

[39]  Douglas H. Johnson THE COMPARISON OF USAGE AND AVAILABILITY MEASUREMENTS FOR EVALUATING RESOURCE PREFERENCE , 1980 .

[40]  Sandro Lovari,et al.  Effects of sampling regime on the mean and variance of home range size estimates. , 2006, The Journal of animal ecology.

[41]  G. D. Smith Ontario Ministry of Natural Resources, Forest Research Branch. Northern Forest Research Unit, Thunder Bay, Ontario, Canada , 1973 .

[42]  W. H. Burt Territoriality and Home Range Concepts as Applied to Mammals , 1943 .

[43]  Fred W. Koontz,et al.  A Geographic Information System Method for Estimating Home Range Size , 1999 .

[44]  Paul M. Thompson,et al.  Functional mechanisms underlying cetacean distribution patterns: hotspots for bottlenose dolphins are linked to foraging , 2004 .

[45]  JOHN FIEBERG,et al.  QUANTIFYING HOME-RANGE OVERLAP: THE IMPORTANCE OF THE UTILIZATION DISTRIBUTION , 2005 .

[46]  Steve Cherry,et al.  Modeling utilization distributions in space and time. , 2009, Ecology.

[47]  M. Boyce,et al.  Relating populations to habitats using resource selection functions. , 1999, Trends in ecology & evolution.

[48]  Robert A. Gitzen,et al.  Analysis of Animal Space Use and Movements , 2001 .

[49]  Eugene P. Odum,et al.  Measurement of territory and home range size in birds , 1955 .

[50]  Darcy R. Visscher,et al.  Memory keeps you at home: a mechanistic model for home range emergence , 2009 .

[51]  Tim Coulson,et al.  An Integrated Approach to Identify Spatiotemporal and Individual‐Level Determinants of Animal Home Range Size , 2006, The American Naturalist.

[52]  Michael S. Mitchell,et al.  Optimal use of resources structures home ranges and spatial distribution of black bears , 2007, Animal Behaviour.

[53]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[54]  Mark S. Boyce,et al.  Scale for resource selection functions , 2006 .

[55]  Norman A. Slade,et al.  Testing For Independence of Observations in Animal Movements , 1985 .

[56]  M. Lewis,et al.  Home range formation in wolves due to scent marking , 2002, Bulletin of mathematical biology.

[57]  Paul G. Blackwell,et al.  Random diffusion models for animal movement , 1997 .

[58]  B. Worton Using Monte Carlo simulation to evaluate kernel-based home range estimators , 1995 .

[59]  N. Pierce Origin of Species , 1914, Nature.

[60]  John G. Kie,et al.  LANDSCAPE HETEROGENEITY AT DIFFERING SCALES: EFFECTS ON SPATIAL DISTRIBUTION OF MULE DEER , 2002 .

[61]  J. Fryxell,et al.  Are there general mechanisms of animal home range behaviour? A review and prospects for future research. , 2008, Ecology letters.

[62]  J. P. Ball,et al.  Grey seal, Halichoerus grypus, habitat selection around haulout sites in the Baltic Sea: bathymetry or central-place foraging? , 2000 .

[63]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[64]  David W. Macdonald,et al.  Are kernels the mustard? Data from global positioning system (GPS) collars suggests problems for kernel home- range analyses with least-squares cross-validation , 2005 .

[65]  F. Bunnell,et al.  Characterizing independence of observations in movements of columbian black-tailed deer , 1994 .

[66]  Sandro Lovari,et al.  Going Out to Mate: Excursion Behaviour of Female Roe Deer , 2008 .

[67]  W. F. Blair,et al.  Notes on Home Ranges and Populations of the Short‐Tailed Shrew , 1940 .

[68]  Christopher N. Jacques,et al.  Seasonal Movements and Home-Range Use by Female Pronghorns in Sagebrush-Steppe Communities of Western South Dakota , 2009 .

[69]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[70]  D. J. Anderson,et al.  The Home Range: A New Nonparametric Estimation Technique , 1982 .

[71]  John G. Kie,et al.  Cattle distribution, habitats, and diets in the Sierra Nevada of California. , 1996 .

[72]  A. Ōkubo,et al.  Di?usion and ecological problems: mathematical models , 1980 .

[73]  Jon S. Horne,et al.  Likelihood Cross-Validation Versus Least Squares Cross-Validation for Choosing the Smoothing Parameter in Kernel Home-Range Analysis , 2006 .

[74]  Bryan F. J. Manly,et al.  Assessing habitat selection when availability changes , 1996 .

[75]  R. Powell,et al.  An Evaluation of the Accuracy of Kernel Density Estimators for Home Range Analysis , 1996 .

[76]  W. V. Winkle COMPARISON OF SEVERAL PROBABILISTIC HOME-RANGE MODELS' , 1975 .

[77]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[78]  Stanley M Tomkiewicz,et al.  Global positioning system and associated technologies in animal behaviour and ecological research , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[79]  Peter N. Laver,et al.  A Critical Review of Home Range Studies , 2008 .

[80]  JOHN FIEBERG,et al.  Utilization Distribution Estimation Using Weighted Kernel Density Estimators , 2007 .

[81]  D. Haydon,et al.  Multiple movement modes by large herbivores at multiple spatiotemporal scales , 2008, Proceedings of the National Academy of Sciences.

[82]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[83]  M. Hebblewhite,et al.  Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[84]  Michael S. Mitchell,et al.  A mechanistic home range model for optimal use of spatially distributed resources , 2004 .

[85]  C. J. Stone,et al.  An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates , 1984 .

[86]  Atte Moilanen,et al.  Kernel-based home range method for data with irregular sampling intervals , 2006 .

[87]  Gordon B. Stenhouse,et al.  Removing GPS collar bias in habitat selection studies , 2004 .

[88]  Stephen T. Buckland,et al.  Fitting Density Functions with Polynomials , 1992 .

[89]  Gary C. White,et al.  Autocorrelation of location estimates and the analysis of radiotracking data , 1999 .

[90]  Dag Ø. Hjermann,et al.  Analyzing habitat selection in animals without well-defined home ranges , 2000 .

[91]  J. Krebs,et al.  Behavioural Ecology: An Evolutionary Approach , 1978 .

[92]  Wayne M. Getz,et al.  LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions , 2007, PloS one.

[93]  William E. Grant,et al.  AI modelling of animal movements in a heterogeneous habitat , 1989 .

[94]  Christopher O. Kochanny,et al.  Comparing Global Positioning System and Very High Frequency Telemetry Home Ranges of White-Tailed Deer , 2009 .

[95]  Steven R. Beissinger,et al.  Effects of parturition on home ranges and social affiliations of female white-tailed deer , 1996 .

[96]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[97]  Francesca Cagnacci,et al.  Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.