Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment

[1]  Annie R. Bice,et al.  In utero exposure to transient ischemia-hypoxemia promotes long-term neurodevelopmental abnormalities in male rat offspring. , 2020, JCI insight.

[2]  P. Pitule,et al.  Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model , 2020, Scientific Reports.

[3]  A. Bryll,et al.  Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia , 2020, Biomolecules.

[4]  Zongze Zhang,et al.  Methylene Blue Protects Against Sevoflurane-Induced Cognitive Dysfunction by Suppressing Drp1 deSUMOylation in Aged Mice , 2020, Neurochemical Research.

[5]  Ethan M. Goldberg,et al.  Mitochondrial deficits in human iPSC-derived neurons from patients with 22q11.2 deletion syndrome and schizophrenia , 2019, Translational Psychiatry.

[6]  Karolinska Schizophrenia Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium , 2018 .

[7]  Adrian Preda,et al.  Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium , 2018, Biological Psychiatry.

[8]  Michael J. Devine,et al.  Mitochondria at the neuronal presynapse in health and disease , 2018, Nature Reviews Neuroscience.

[9]  A. Holmgren,et al.  Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. , 2017, Antioxidants & redox signaling.

[10]  Marie Carlén,et al.  What constitutes the prefrontal cortex? , 2017, Science.

[11]  Olaf Sporns,et al.  Organizing principles for the cerebral cortex network of commissural and association connections , 2017, Proceedings of the National Academy of Sciences.

[12]  R. D. D'Souza,et al.  A Laminar Organization for Selective Cortico-Cortical Communication , 2017, Front. Neuroanat..

[13]  R. Chang,et al.  A reciprocal relationship between reactive oxygen species and mitochondrial dynamics in neurodegeneration , 2017, Redox biology.

[14]  Ariana E. Anderson,et al.  Intrinsic Connectivity Network-Based Classification and Detection of Psychotic Symptoms in Youth With 22q11.2 Deletions , 2017, Cerebral cortex.

[15]  René S. Kahn,et al.  Connectome Disconnectivity and Cortical Gene Expression in Patients With Schizophrenia , 2017, Biological Psychiatry.

[16]  Wei Cheng,et al.  Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects , 2016, Nature Genetics.

[17]  B. O’Rourke,et al.  Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes* , 2016, The Journal of Biological Chemistry.

[18]  T. Wai,et al.  Mitochondrial Dynamics and Metabolic Regulation , 2016, Trends in Endocrinology & Metabolism.

[19]  Torfi Sigurdsson,et al.  Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease , 2016, Front. Syst. Neurosci..

[20]  H. Morishita,et al.  Prefrontal Cortex and Social Cognition in Mouse and Man , 2015, Front. Psychol..

[21]  Peter J. Scambler,et al.  22q11.2 deletion syndrome. , 2015, Nature reviews. Disease primers.

[22]  Paola Arlotta,et al.  Generating neuronal diversity in the mammalian cerebral cortex. , 2015, Annual review of cell and developmental biology.

[23]  A. LaMantia,et al.  Ranbp1, Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation. , 2015, Cerebral cortex.

[24]  Christopher S. Poultney,et al.  Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci , 2015, Neuron.

[25]  Liqun Luo,et al.  Connectivity of Mouse Somatosensory and Prefrontal Cortex Examined with Trans-synaptic Tracing , 2015, Nature Neuroscience.

[26]  Sol Katzman,et al.  Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex , 2015, Proceedings of the National Academy of Sciences.

[27]  Dimitri Van De Ville,et al.  Structural and functional connectivity in the default mode network in 22q11.2 deletion syndrome , 2015, Journal of Neurodevelopmental Disorders.

[28]  A. LaMantia,et al.  Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development , 2015, Progress in Neurobiology.

[29]  Hongkui Zeng,et al.  Lineage Tracing Using Cux2-Cre and Cux2-CreERT2 Mice , 2015, Neuron.

[30]  Joseph A. Gogos,et al.  Molecular Substrates of Altered Axonal Growth and Brain Connectivity in a Mouse Model of Schizophrenia , 2015, Neuron.

[31]  A. LaMantia,et al.  Cognitive ability is associated with altered medial frontal cortical circuits in the LgDel mouse model of 22q11.2DS. , 2015, Cerebral cortex.

[32]  O. Sporns,et al.  Architecture of the cerebral cortical association connectome underlying cognition , 2015, Proceedings of the National Academy of Sciences.

[33]  H. Yoshida,et al.  Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome. , 2015, Journal of biochemistry.

[34]  P. Parzer,et al.  Volumetric Alterations in the Heteromodal Association Cortex in Children with Autism Spectrum Disorder , 2015, European Psychiatry.

[35]  R M Henkelman,et al.  Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity , 2014, Molecular Psychiatry.

[36]  A. Holmgren,et al.  The thioredoxin antioxidant system. , 2014, Free radical biology & medicine.

[37]  Allan L Reiss,et al.  Identifying large-scale brain networks in fragile X syndrome. , 2013, JAMA psychiatry.

[38]  Scott R Sponheim,et al.  Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition , 2013, Nature Neuroscience.

[39]  R. Kraftsik,et al.  Early-Life Insults Impair Parvalbumin Interneurons via Oxidative Stress: Reversal by N-Acetylcysteine , 2013, Biological Psychiatry.

[40]  M. Berk,et al.  The promise of N-acetylcysteine in neuropsychiatry. , 2013, Trends in pharmacological sciences.

[41]  R. Gruetter,et al.  N-Acetylcysteine Normalizes Neurochemical Changes in the Glutathione-Deficient Schizophrenia Mouse Model During Development , 2012, Biological Psychiatry.

[42]  Sarah E. Schipul,et al.  Distinctive neural processes during learning in autism. , 2012, Cerebral cortex.

[43]  Omer Kalayci,et al.  Oxidative Stress and Antioxidant Defense , 2012, The World Allergy Organization journal.

[44]  A. Stemmer-Rachamimov,et al.  Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. , 2011, Cancer research.

[45]  Conor Liston,et al.  Atypical Prefrontal Connectivity in Attention-Deficit/Hyperactivity Disorder: Pathway to Disease or Pathological End Point? , 2011, Biological Psychiatry.

[46]  L. Niels Cornelisse,et al.  Automated analysis of neuronal morphology, synapse number and synaptic recruitment , 2011, Journal of Neuroscience Methods.

[47]  Sam Wass,et al.  Distortions and disconnections: Disrupted brain connectivity in autism , 2011, Brain and Cognition.

[48]  Alexander Borst,et al.  One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application , 2010, PLoS Comput. Biol..

[49]  M. Sigman,et al.  A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections , 2010, Neuropsychologia.

[50]  Anthony-Samuel LaMantia,et al.  Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome , 2009, Proceedings of the National Academy of Sciences.

[51]  Joaquín M. Fuster,et al.  Cortex and Memory: Emergence of a New Paradigm , 2009, Journal of Cognitive Neuroscience.

[52]  J. Lieberman,et al.  Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes , 2008, Molecular and Cellular Neuroscience.

[53]  O. Britanova,et al.  Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex , 2008, Neuron.

[54]  S. Mcconnell,et al.  Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex , 2008, Neuron.

[55]  Dean P. Jones,et al.  Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. , 2007, Archives of biochemistry and biophysics.

[56]  L. Herzenberg,et al.  N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. , 2007, Current opinion in pharmacology.

[57]  J. Sanes,et al.  LKB1 and SAD Kinases Define a Pathway Required for the Polarization of Cortical Neurons , 2007, Cell.

[58]  Shao-Hua Yang,et al.  Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells , 2007, Brain Research.

[59]  D. Geschwind,et al.  Autism spectrum disorders: developmental disconnection syndromes , 2007, Current Opinion in Neurobiology.

[60]  A. LaMantia,et al.  When half is not enough: gene expression and dosage in the 22q11 deletion syndrome. , 2006, Gene expression.

[61]  M. Hosokawa,et al.  Apical vulnerability to dendritic retraction in prefrontal neurones of ageing SAMP10 mouse: a model of cerebral degeneration , 2006, Neuropathology and applied neurobiology.

[62]  B. Ahlemeyer,et al.  Optimized protocols for the simultaneous preparation of primary neuronal cultures of the neocortex, hippocampus and cerebellum from individual newborn (P0.5) C57Bl/6J mice , 2005, Journal of Neuroscience Methods.

[63]  Dante S. Bortone,et al.  Phosphorylation of Neurogenin2 Specifies the Migration Properties and the Dendritic Morphology of Pyramidal Neurons in the Neocortex , 2005, Neuron.

[64]  A. P. Bannister,et al.  Inter- and intra-laminar connections of pyramidal cells in the neocortex , 2005, Neuroscience Research.

[65]  J. Smeitink,et al.  Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. , 2005, American journal of physiology. Cell physiology.

[66]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[67]  W. Wurst,et al.  Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis, Heart Development, and Heart Function , 2004, Molecular and Cellular Biology.

[68]  M. Just,et al.  Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. , 2004, Brain : a journal of neurology.

[69]  Andrew P McMahon,et al.  A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. , 2002, Development.

[70]  Birgit Funke,et al.  TBX1 Is Responsible for Cardiovascular Defects in Velo-Cardio-Facial/DiGeorge Syndrome , 2001, Cell.

[71]  R. Dringen,et al.  N-Acetylcysteine, but not methionine or 2-oxothiazolidine-4-carboxylate, serves as cysteine donor for the synthesis of glutathione in cultured neurons derived from embryonal rat brain , 1999, Neuroscience Letters.

[72]  R. T. Watson,et al.  Efferent Connections of the Rostral Portion of Medial Agranular Cortex in Rats , 1987, Brain Research Bulletin.

[73]  D. Purves,et al.  Dynamic changes in the dendritic geometry of individual neurons visualized over periods of up to three months in the superior cervical ganglion of living mice , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  CONTACT FOR REAGENT AND RESOURCE SHARING , 2018 .

[75]  Kenneth Y Kwan,et al.  Transcriptional dysregulation of neocortical circuit assembly in ASD. , 2013, International review of neurobiology.

[76]  D. Leibfritz,et al.  Free radicals and antioxidants in normal physiological functions and human disease. , 2007, The international journal of biochemistry & cell biology.

[77]  Anirvan Ghosh,et al.  Molecular control of cortical dendrite development. , 2002, Annual review of neuroscience.

[78]  O. Aruoma,et al.  The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. , 1989, Free radical biology & medicine.