Global strong solutions to the one-dimensional full compressible liquid crystal equations with temperature-dependent heat conductivity

Abstract In this paper, we consider the initial-boundary value problem of compressible non-isothermal liquid crystal flow in one-dimensional space. The existence of the global strong solution with large initial data is proved. In the proof of the main results, we assume that heat conductivity obeys the power law of the form κ ( θ ) = θ β with β > 0 .

[1]  Hao Wu,et al.  Global Solution to the Three-Dimensional Compressible Flow of Liquid Crystals , 2012, SIAM J. Math. Anal..

[2]  Daniel Coutand,et al.  Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals , 2001 .

[3]  Gui-Qiang G. Chen,et al.  Global Solutions of Nonlinear Magnetohydrodynamics with Large Initial Data , 2002 .

[5]  Iain W. Stewart,et al.  The Static and Dynamic Continuum Theory of Liquid Crystals , 2001 .

[6]  Qiao Liu On temporal decay of solution to the three‐dimensional compressible flow of nematic liquid crystal in Besov space , 2018, Mathematical Methods in the Applied Sciences.

[7]  Changyou Wang,et al.  Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data , 2010, 1001.2296.

[8]  J. Prüss,et al.  Dynamics of the Ericksen–Leslie Equations with General Leslie Stress II: The Compressible Isotropic Case , 2019, Archive for Rational Mechanics and Analysis.

[9]  J. Ericksen,et al.  Continuum Theory of Liquid Crystals of Nematic Type , 1969 .

[10]  Shengquan Liu,et al.  Global existence and temporal decay for the nematic liquid crystal flows , 2015 .

[11]  Fanghua Lin,et al.  Liquid Crystal Flows in Two Dimensions , 2010 .

[12]  Xiuhui Yang Uniform well-posedness and low Mach number limit to the compressible nematic liquid crystal flows in a bounded domain , 2015 .

[13]  Dehua Wang,et al.  Global Weak Solution and Large-Time Behavior for the Compressible Flow of Liquid Crystals , 2011, 1108.4939.

[14]  Changyou Wang,et al.  Well-Posedness of Nematic Liquid Crystal Flow in $${L^{3}_{\rm uloc}(\mathbb{R}^3)}$$ , 2012, 1208.5965.

[15]  Steve Shkoller,et al.  WELL-POSEDNESS AND GLOBAL ATTRACTORS FOR LIQUID CRYSTALS ON RIEMANNIAN MANIFOLDS , 2001, math/0101203.

[16]  Takaaki Nishida,et al.  The initial value problem for the equations of motion of viscous and heat-conductive gases , 1980 .

[17]  Zhi-Min Chen,et al.  Global Well-posedness for the Density-Dependent Incompressible Flow of Liquid Crystals , 2018 .

[18]  R. Pan,et al.  Compressible Navier-Stokes equations with temperature dependent heat conductivity , 2015 .

[19]  L. Huang,et al.  The global well-posedness of the Cauchy problem for a liquid crystal system , 2018 .

[20]  Jianwen Zhang,et al.  Global Existence of Classical Solutions with Large Oscillations and Vacuum to the Three-Dimensional Compressible Nematic Liquid Crystal Flows , 2018, Journal of Mathematical Fluid Mechanics.

[21]  Shengquan Liu,et al.  Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows☆ , 2016 .

[22]  Chun Liu,et al.  Non-isothermal General Ericksen–Leslie System: Derivation, Analysis and Thermodynamic Consistency , 2017, Archive for Rational Mechanics and Analysis.

[23]  B. Guo,et al.  Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals , 2017 .

[24]  E. Feireisl,et al.  On a non-isothermal model for nematic liquid crystals , 2009 .

[25]  Shijin Ding,et al.  Local existence of unique strong solution to non-isothermal model for incompressible nematic liquid crystals in 3D , 2014, Appl. Math. Comput..

[26]  Huanyao Wen,et al.  Solutions of incompressible hydrodynamic flow of liquid crystals , 2011 .

[27]  J. Prüss,et al.  Modeling and analysis of the ericksen-leslie equations for nematic liquid crystal flows , 2018 .

[28]  Z. Yao,et al.  Long-time Behavior of Solution for the Compressible Nematic Liquid Crystal Flows in $\mathbb{R}^3$ , 2015, 1503.02865.

[29]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[30]  Spherically symmetric solutions to compressible hydrodynamic flow of liquid crystals in N dimensions , 2012 .

[31]  Jan Pruess,et al.  Thermodynamical consistent modeling and analysis of nematic liquid crystal flows , 2015, 1504.01237.

[32]  Qiangchang Ju,et al.  Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity , 2015 .

[33]  F. M. Leslie Some constitutive equations for liquid crystals , 1968 .

[34]  M. Frémond,et al.  A New Approach to Non-Isothermal Models for Nematic Liquid Crystals , 2011, 1104.1339.

[36]  Jinrui Huang,et al.  Compressible hydrodynamic flow of nematic liquid crystals with vacuum , 2015 .

[37]  Changyou Wang,et al.  Compressible hydrodynamic flow of liquid crystals in 1-D , 2011 .

[38]  Dongfen Bian,et al.  Global solution to the nematic liquid crystal flows with heat effect , 2016, 1604.04082.

[39]  Yachun Li,et al.  Global large solutions to planar magnetohydrodynamics equations with temperature-dependent coefficients , 2019, Journal of Hyperbolic Differential Equations.

[40]  Chun Liu,et al.  Existence of Solutions for the Ericksen-Leslie System , 2000 .

[41]  J. Ericksen Conservation Laws for Liquid Crystals , 1961 .

[42]  X. Zhong Singularity formation to the two-dimensional compressible non-isothermal nematic liquid crystal flows in a bounded domain , 2019, Journal of Differential Equations.

[43]  Z. Xin,et al.  GLOBAL EXISTENCE OF WEAK SOLUTIONS TO THE NON-ISOTHERMAL NEMATIC LIQUID CRYSTALS IN 2D , 2016 .

[44]  Changyou Wang,et al.  Time decay rate of global strong solutions to nematic liquid crystal flows in R+3 , 2018, Journal of Differential Equations.

[45]  Xiang Xu,et al.  On the General Ericksen–Leslie System: Parodi’s Relation, Well-Posedness and Stability , 2011, 1105.2180.

[46]  Huanyao Wen,et al.  Strong solutions of the compressible nematic liquid crystal flow , 2011, 1104.5684.

[47]  Changyou Wang,et al.  WEAK SOLUTION TO COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN DIMENSION ONE , 2010 .

[48]  V. V. Shelukhin,et al.  Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas: PMM vol. 41, n≗ 2, 1977, pp. 282–291 , 1977 .

[49]  Junyu Lin,et al.  Global Finite Energy Weak Solutions to the Compressible Nematic Liquid Crystal Flow in Dimension Three , 2014, SIAM J. Math. Anal..

[50]  F. Lin Nonlinear theory of defects in nematic liquid crystals; Phase transition and flow phenomena , 1989 .