Rate-limiting steps in the dark-to-light transition of Photosystem II - revealed by chlorophyll-a fluorescence induction

[1]  A. Visioli,et al.  Practical issues , 2020, Digital Control Engineering.

[2]  R. Grondelle,et al.  Quantum design of photosynthesis for bio-inspired solar-energy conversion , 2017, Nature.

[3]  Takashi Kameshima,et al.  Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL , 2017, Nature.

[4]  S. Zakharov,et al.  Pathways of Transmembrane Electron Transfer in Cytochrome bc Complexes: Dielectric Heterogeneity and Interheme Coulombic Interactions. , 2017, The journal of physical chemistry. B.

[5]  E. Schlodder,et al.  Temperature dependence of the oxidation kinetics of TyrZ and TyrD in oxygen-evolving photosystem II complexes throughout the range from 320K to 5K. , 2015, Biochimica et biophysica acta.

[6]  W. Vredenberg A simple routine for quantitative analysis of light and dark kinetics of photochemical and non-photochemical quenching of chlorophyll fluorescence in intact leaves , 2015, Photosynthesis Research.

[7]  G. Garab,et al.  Pigment Interactions in Light-harvesting Complex II in Different Molecular Environments* , 2014, The Journal of Biological Chemistry.

[8]  J. Serôdio,et al.  Frequently asked questions about in vivo chlorophyll fluorescence: practical issues , 2014, Photosynthesis Research.

[9]  S. Santabarbara,et al.  A Comparison Between Plant Photosystem I and Photosystem II Architecture and Functioning , 2014, Current protein & peptide science.

[10]  Govindjee,et al.  Modeling chlorophyll a fluorescence transient: Relation to photosynthesis , 2014, Biochemistry (Moscow).

[11]  G. Garab Hierarchical organization and structural flexibility of thylakoid membranes. , 2014, Biochimica et biophysica acta.

[12]  Athina Zouni,et al.  The nonheme iron in photosystem II , 2013, Photosynthesis Research.

[13]  A. Stirbet Excitonic connectivity between photosystem II units: what is it, and how to measure it? , 2013, Photosynthesis Research.

[14]  David W. Russell,et al.  Photosystem II: the reaction center of oxygenic photosynthesis. , 2013, Annual review of biochemistry.

[15]  G. Venturoli,et al.  Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. , 2013, Biochimica et biophysica acta.

[16]  Govindjee,et al.  Photosystem II and the unique role of bicarbonate: a historical perspective. , 2012, Biochimica et biophysica acta.

[17]  Govindjee,et al.  Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise , 2012, Photosynthesis Research.

[18]  P. Pissis,et al.  Protein and water dynamics in bovine serum albumin-water mixtures over wide ranges of composition. , 2012, The journal of physical chemistry. B.

[19]  A. Zouni,et al.  Light-induced quinone reduction in photosystem II. , 2012, Biochimica et biophysica acta.

[20]  A. Rutherford,et al.  Charge separation in photosystem II: a comparative and evolutionary overview. , 2012, Biochimica et biophysica acta.

[21]  G. Garab,et al.  Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. , 2011, Biochimica et biophysica acta.

[22]  Keisuke Kawakami,et al.  Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å , 2011, Nature.

[23]  A. Rubin,et al.  Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii. , 2011, Journal of photochemistry and photobiology. B, Biology.

[24]  Wim Vredenberg,et al.  Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems , 2011, Biosyst..

[25]  G. Renger,et al.  Protein dynamics investigated by neutron scattering , 2009, Photosynthesis Research.

[26]  Jan Kern,et al.  Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride , 2009, Nature Structural &Molecular Biology.

[27]  Matthew P. Johnson,et al.  Induction of Efficient Energy Dissipation in the Isolated Light-harvesting Complex of Photosystem II in the Absence of Protein Aggregation* , 2008, Journal of Biological Chemistry.

[28]  W. Vredenberg Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II , 2008, Photosynthesis Research.

[29]  A. Scherz,et al.  Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature , 2006, Nature.

[30]  B. Logan,et al.  Chlorophyll a Fluorescence: A Signature of Photosynthesis , 2005 .

[31]  Kazimierz Strzałka,et al.  A theoretical study on effect of the initial redox state of cytochrome b559 on maximal chlorophyll fluorescence level (F(M)): implications for photoinhibition of photosystem II. , 2005, Journal of theoretical biology.

[32]  P. Lelkes,et al.  Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes , 1980, The Journal of Membrane Biology.

[33]  I. Moya,et al.  Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the IP thermal phase. , 2004, Biochimica et biophysica acta.

[34]  C. Vernotte,et al.  Construction and characterization of a phycobiliprotein-less mutant of Synechocystis sp. PCC 6803 , 1998, Plant Molecular Biology.

[35]  R. Strasser,et al.  Analysis of the Chlorophyll a Fluorescence Transient , 2004 .

[36]  Govindjee,et al.  Chlorophyll a Fluorescence , 2004, Advances in Photosynthesis and Respiration.

[37]  N. Kamiya,et al.  Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus. , 2000, Biochemistry.

[38]  A. Holzwarth,et al.  Self-regulation phenomena in bacterial reaction centers. I. General theory. , 2000, Biophysical journal.

[39]  Jeremy Fairbank,et al.  Historical Perspective , 1987, Do We Really Understand Quantum Mechanics?.

[40]  G. Renger,et al.  Correlation between protein flexibility and electron transfer from QA-* to QB in PSII membrane fragments from spinach. , 1998, Biochemistry.

[41]  G. Samson,et al.  Origins of the low yield of chlorophyll a fluorescence induced by single turnover flash in spinach thylakoids , 1996 .

[42]  Govindjee,et al.  Insight into the relationship of chlorophyll a fluorescence yield to the concentration of its natural quenchers in oxygenic photosynthesis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Jian-Ren Shen,et al.  Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. , 1993, Biochemistry.

[44]  N. Geacintov,et al.  The dependence of the degrees of sigmoidicities of fluorescence induction curves in spinach chloroplasts on the duration of actinic pulses in pump-probe experiments , 1992 .

[45]  N. Geacintov,et al.  The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses. , 1991, Biophysical journal.

[46]  G. Garab,et al.  Two populations of the high‐potential form of cytochrome b‐559 in chloroplasts treated with 2‐(3‐chloro‐4‐trifluoromethyl)amino‐3,5‐dinitrothiophene (Ant 2p) , 1989 .

[47]  G. Garab,et al.  Configuration of the electric field and distribution of ions in energy transducing biological membranes: Model calculations in a vesicle containing discrete charges , 1989 .

[48]  J. Briantais,et al.  The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence , 1989 .

[49]  R. Chylla,et al.  Evidence for slow turnover in a fraction of Photosystem II complexes in thylakoid membranes , 1987 .

[50]  P. Sétif,et al.  Flash‐induced absorption changes in photosystem I at low temperature: evidence that the electron acceptor A1 is vitamin K1 , 1986 .

[51]  Y. Inoue,et al.  THERMOLUMINESCENCE and OXYGEN EVOLUTION FROM A THERMOPHILIC BLUE‐GREEN ALGA OBTAINED AFTER SINGLE‐TURNOVER LIGHT FLASHES * , 1985 .

[52]  A. F. Janzen,et al.  EFFECTS OF SOLVENT ON THE FLUORESCENCE PROPERTIES OF BACTERIOCHLOROPHYLL a , 1982 .

[53]  P. Joliot,et al.  A photosystem II electron acceptor which is not a plastoquinone , 1981 .

[54]  P. Joliot,et al.  Comparative study of the fluorescence yield and of the C550 absorption change at room temperature. , 1979, Biochimica et biophysica acta.

[55]  S. Katoh,et al.  Studies on chlorophyll fluorescence in chloroplasts II. Effect of ferricyanide on the induction of fluorescence in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea , 1973 .

[56]  René Delosme,et al.  Étude de l'induction de fluorescence des algues vertes et des chloroplastes au début d'une illumination intense☆ , 1967 .

[57]  R. Delosme [Study of the induction of fluorescence in green algae and chloroplasts at the onset of an intense illumination]. , 1967, Biochimica et biophysica acta.

[58]  P. Joliot,et al.  [KINETIC STUDY OF THE POTOCHEMICAL REACTION LIBERATING OXYGEN DURING PHOTOSYNTHESIS]. , 1964, Comptes rendus hebdomadaires des seances de l'Academie des sciences.

[59]  K. N. Dollman,et al.  - 1 , 1743 .