AFAM: An Articulated Four Axes Microrobot for Nanoscale Applications

This paper presents a microassembled robot called the Articulated Four Axes Microrobot (AFAM). Target application areas include micro and nano part manipulation and probing. The robot consists of a cantilever actuated along four axes: in-place <formula formulatype="inline"><tex Notation="TeX">$X, Y$</tex></formula> and <formula formulatype="inline"><tex Notation="TeX">$YAW$</tex> </formula>; out-of-plane pitch. The microrobot size spans a total volume of <formula formulatype="inline"><tex Notation="TeX">$3~{\rm mm}\times 1.5~{\rm mm}\times 1~{\rm mm}$</tex></formula> (<formula formulatype="inline"><tex Notation="TeX">$XYZ$</tex> </formula>), and operates within a workspace envelope of <formula formulatype="inline"> <tex Notation="TeX">$50~\mu{\rm m}\times 50~\mu{\rm m}\times 75~\mu{\rm m}$</tex> </formula> (<formula formulatype="inline"><tex Notation="TeX">$XYZ$</tex> </formula>). This is by far the largest operating envelope of any micropositioner with nonplanar dexterity. As a result it can be classified as a new type of three-dimensional microrobot and a candidate for miniaturizing top-down assembly systems to dimensions under <formula formulatype="inline"><tex Notation="TeX">$1~{\rm cm}^{3}$</tex></formula>. A key feature in this design is a cable-like microwire that transforms in-plane actuator displacement into out-of-plane pitch and yaw motion (via flexure joints). Finite-element analysis simulation followed by microfabrication and assembly processes developed to prototype the designs are described. The microrobot is designed to carry an AFM tip as the end effector and accomplish nanoindentation on a polymer surface. The tip attachment technique and nanoindentation experiments have also been described in this paper. Open loop precision has been characterized using a laser interferometer which measured an average resolution of 50 nm along <formula formulatype="inline"><tex Notation="TeX">$XYZ$</tex> </formula>, repeatability of 100 nm and accuracy of 500 nm. Experiments to determine microrobot reliability are also presented.

[1]  Pablo González de Santos,et al.  The evolution of robotics research , 2007, IEEE Robotics & Automation Magazine.

[2]  Ahmed Busnaina,et al.  Mechanism of very large scale assembly of SWNTs in template guided fluidic assembly process. , 2009, Journal of the American Chemical Society.

[3]  Kristofer S. J. Pister,et al.  Surface-micromachined components for articulated microrobots , 1996 .

[4]  Yong Zhang,et al.  Automated Four-Point Probe Measurement of Nanowires Inside a Scanning Electron Microscope , 2011, IEEE Transactions on Nanotechnology.

[5]  Bradley J. Nelson,et al.  Tutorial - Robotics in the small Part II: Nanorobotics , 2007, IEEE Robotics & Automation Magazine.

[6]  Dan O. Popa,et al.  ARRIpede: A stick-slip micro crawler/conveyor robot constructed via 2 ½D MEMS assembly , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Ping Zhang,et al.  μ3: Multiscale, Deterministic Micro-Nano Assembly System for Construction of On-Wafer Microrobots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[8]  Xinyu Liu,et al.  A MEMS Stage for 3-Axis Nanopositioning , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[9]  Dan O. Popa,et al.  Millimeter-scale microrobots for wafer-level factories , 2010, 2010 IEEE International Conference on Robotics and Automation.

[10]  Metin Sitti,et al.  Teleoperated and automatic nanomanipulation systems using atomic force microscope probes , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[11]  Quan Zhou,et al.  Hybrid Microassembly Combining Robotics and Water Droplet Self-Alignment , 2010, IEEE Transactions on Robotics.

[12]  Dan O. Popa,et al.  A four degree of freedom microrobot with large work volume , 2009, 2009 IEEE International Conference on Robotics and Automation.

[13]  P L McEuen,et al.  Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. , 2004, Physical review letters.

[14]  A. Geisberger,et al.  Electrothermal properties and modeling of polysilicon microthermal actuators , 2003 .

[15]  Markus Brink,et al.  Electrical cutting and nicking of carbon nanotubes using an atomic force microscope , 2002 .

[16]  Sergej Fatikow,et al.  A Flexible Microrobot-Based Microassembly Station , 2000, J. Intell. Robotic Syst..

[17]  Sergej Fatikow,et al.  Microrobot System for Automatic Nanohandling Inside a Scanning Electron Microscope , 2006, IEEE/ASME Transactions on Mechatronics.

[18]  Placid Mathew Ferreira,et al.  Design, fabrication and testing of a silicon-on-insulator (SOI) MEMS parallel kinematics XY stage , 2007 .

[19]  Jake J. Abbott,et al.  Robotics in the Small, Part I: Microbotics , 2007, IEEE Robotics & Automation Magazine.