Skip-Sliding Window Codes

Constrained coding is used widely in digital communication and storage systems. In this article, we study a generalized sliding window constraint called the skip-sliding window. A skip-sliding window (SSW) code is defined in terms of the length <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula> of a sliding window, skip length <inline-formula> <tex-math notation="LaTeX">$J$ </tex-math></inline-formula>, and cost constraint <inline-formula> <tex-math notation="LaTeX">$E$ </tex-math></inline-formula> in each sliding window. Each valid codeword of length <inline-formula> <tex-math notation="LaTeX">$L + kJ$ </tex-math></inline-formula> is determined by <inline-formula> <tex-math notation="LaTeX">$k+1$ </tex-math></inline-formula> windows of length <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula> where window <inline-formula> <tex-math notation="LaTeX">$i$ </tex-math></inline-formula> starts at <inline-formula> <tex-math notation="LaTeX">$(iJ + 1)$ </tex-math></inline-formula>th symbol for all non-negative integers <inline-formula> <tex-math notation="LaTeX">$i$ </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">$i \leq k$ </tex-math></inline-formula>; and the cost constraint <inline-formula> <tex-math notation="LaTeX">$E$ </tex-math></inline-formula> in each window must be satisfied. SSW coding constraints naturally arise in applications such as simultaneous energy and information transfer, and SSW codes are also potential candidates for visible light communications. In this work, two methods are given to enumerate the size of SSW codes and further refinements are made to reduce the enumeration complexity. Using the proposed enumeration methods, the noiseless capacity of binary SSW codes is determined and some useful observations are made, such as the fact that SSW codes provide greater capacity than certain related classes of constrained codes. Moreover, we provide noisy capacity bounds for SSW codes.

[1]  Richard P. Stanley,et al.  Algebraic Combinatorics: Walks, Trees, Tableaux, and More , 2013 .

[2]  I. Goulden,et al.  AN INVERSION THEOREM FOR CLUSTER DECOMPOSITIONS OF SEQUENCES WITH DISTINGUISHED SUBSEQUENCES , 1979 .

[3]  Kees A. Schouhamer Immink,et al.  Runlength-limited sequences , 1990, Proc. IEEE.

[4]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[5]  Mohamed M. Abdallah,et al.  Code Design for Flicker Mitigation in Visible Light Communications Using Finite State Machines , 2017, IEEE Transactions on Communications.

[6]  Mehul Motani,et al.  Bounds on the Size and Asymptotic Rate of Subblock-Constrained Codes , 2018, IEEE Transactions on Information Theory.

[7]  Mehul Motani,et al.  Skip-Sliding Window Codes , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[8]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[9]  Mehul Motani,et al.  Generalized Sphere-Packing Bound for Subblock-Constrained Codes , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[10]  Lajos Hanzo,et al.  Unity-Rate Codes Maximize the Normalized Throughput of ON–OFF Keying Visible Light Communication , 2017, IEEE Photonics Technology Letters.

[11]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[12]  Schouhamer Immink,et al.  Codes for mass data storage systems , 2004 .

[13]  Elza Erkip,et al.  Constrained Codes for Joint Energy and Information Transfer , 2014, IEEE Transactions on Communications.

[14]  Angela I. Barbero,et al.  Coding for Inductively Coupled Channels , 2012, IEEE Transactions on Information Theory.

[15]  Gérard D. Cohen,et al.  On Bounded Weight Codes , 2010, IEEE Transactions on Information Theory.

[16]  Kui Cai,et al.  Block Codes for Energy-Harvesting Sliding-Window Constrained Channels , 2020, IEEE Commun. Lett..

[17]  Shancheng Zhao,et al.  A Serial Concatenation-Based Coding Scheme for Dimmable Visible Light Communication Systems , 2016, IEEE Communications Letters.

[18]  Mehul Motani,et al.  On code design for simultaneous energy and information transfer , 2014, 2014 Information Theory and Applications Workshop (ITA).

[19]  Kaibin Huang,et al.  Energy Harvesting Wireless Communications: A Review of Recent Advances , 2015, IEEE Journal on Selected Areas in Communications.

[20]  Tuan Thanh Nguyen,et al.  Binary Subblock Energy-Constrained Codes: Knuth’s Balancing and Sequence Replacement Techniques , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[21]  V. Kozyakin On accuracy of approximation of the spectral radius by the Gelfand formula , 2008, 0810.2856.

[22]  Mehul Motani,et al.  Subblock-Constrained Codes for Real-Time Simultaneous Energy and Information Transfer , 2015, IEEE Transactions on Information Theory.

[23]  Gérard D. Cohen,et al.  Heavy weight codes , 2010, 2010 IEEE International Symposium on Information Theory.

[24]  Jack K. Wolf,et al.  On runlength codes , 1988, IEEE Trans. Inf. Theory.

[25]  Mehul Motani,et al.  Are Run-Length Limited Codes Suitable for Simultaneous Energy and Information Transfer? , 2019, IEEE Transactions on Green Communications and Networking.

[26]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[27]  Aaron D. Wyner,et al.  A theorem on the entropy of certain binary sequences and applications-I , 1973, IEEE Trans. Inf. Theory.

[28]  Alexandre Graell i Amat,et al.  Design of a Concatenated Coding Scheme for a Bit-Shift Channel , 2010, 2010 IEEE International Conference on Communications.

[29]  Shlomo Shamai,et al.  Extension of an entropy property for binary input memoryless symmetric channels , 1989, IEEE Trans. Inf. Theory.

[30]  Sridhar Rajagopal,et al.  IEEE 802.15.7 visible light communication: modulation schemes and dimming support , 2012, IEEE Communications Magazine.

[31]  Abhinav Kumar,et al.  Improved run length limited codes for VLC using dimming control compensation symbols , 2018, 2018 10th International Conference on Communication Systems & Networks (COMSNETS).