How to improve the performances of DEA/FDH estimators in the presence of noise?

In frontier analysis, most nonparametric approaches (DEA, FDH) are based on envelopment ideas which assume that with probability one, all observed units belong to the attainable set. In these “deterministic” frontier models, statistical inference is now possible, by using bootstrap procedures. In the presence of noise, envelopment estimators could behave dramatically since they are very sensitive to extreme observations that might result only from noise. DEA/FDH techniques would provide estimators with an error of the order of the standard deviation of the noise. This paper adapts some recent results on detecting change points [Hall P, Simar L (2002) J Am Stat Assoc 97:523–534] to improve the performances of the classical DEA/FDH estimators in the presence of noise. We show by simulated examples that the procedure works well, and better than the standard DEA/FDH estimators, when the noise is of moderate size in term of signal to noise ratio. It turns out that the procedure is also robust to outliers. The paper can be seen as a first attempt to formalize stochastic DEA/FDH estimators.

[1]  G. Debreu The Coefficient of Resource Utilization , 1951 .

[2]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[3]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[4]  R. Shepherd Theory of cost and production functions , 1970 .

[5]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[6]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[7]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[8]  William W. Cooper,et al.  Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through , 1981 .

[9]  C. Lovell,et al.  On the estimation of technical inefficiency in the stochastic frontier production function model , 1982 .

[10]  P. Pestieau,et al.  Public Enterprise Economics.@@@The Performance of Public Enterprises: Concepts and Measurement. , 1987 .

[11]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[12]  W. Härdle Applied Nonparametric Regression , 1991 .

[13]  W. Greene A Gamma-distributed stochastic frontier model , 1990 .

[14]  J. Sengupta Maximum probability dominance and portfolio theory , 1991 .

[15]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[16]  W. Härdle Applied Nonparametric Regression , 1992 .

[17]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[18]  R. Banker Maximum likelihood, consistency and data envelopment analysis: a statistical foundation , 1993 .

[19]  Kenneth C. Land,et al.  Chance‐constrained data envelopment analysis , 1993 .

[20]  P. W. Wilson Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs , 1993 .

[21]  J. Sengupta,et al.  Portfolio efficiency tests based on stochastic dominance and co-integration , 1993 .

[22]  N. Petersen,et al.  Chance constrained efficiency evaluation , 1995 .

[23]  Léopold Simar,et al.  On estimation of monotone and convex boundaries , 1995 .

[24]  A. Tsybakov,et al.  Efficient Estimation of Monotone Boundaries , 1995 .

[25]  Léopold Simar,et al.  A general framework for frontier estimation with panel data , 1996 .

[26]  Kaoru Tone,et al.  Data Envelopment Analysis , 1996 .

[27]  Lawrence M. Seiford,et al.  Data envelopment analysis: The evolution of the state of the art (1978–1995) , 1996 .

[28]  Lawrence M. Seiford,et al.  A bibliography for Data Envelopment Analysis (1978-1996) , 1997, Ann. Oper. Res..

[29]  Shawna Grosskopf,et al.  Budget-Constrained Frontier Measures of Fiscal Equality and Efficiency in Schooling , 1997, Review of Economics and Statistics.

[30]  P. W. Wilson,et al.  Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models , 1998 .

[31]  B. Park,et al.  A NOTE ON THE CONVERGENCE OF NONPARAMETRIC DEA ESTIMATORS FOR PRODUCTION EFFICIENCY SCORES , 1998, Econometric Theory.

[32]  Dieter Gstach,et al.  Another Approach to Data Envelopment Analysis in Noisy Environments: DEA+ , 1998 .

[33]  P. W. Wilson,et al.  Statistical Inference in Nonparametric Frontier Models: The State of the Art , 1999 .

[34]  W. Cooper,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 1999 .

[35]  E. Mammen,et al.  On estimation of monotone and concave frontier functions , 1999 .

[36]  B. Park,et al.  THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.

[37]  Leâ Opold Simar,et al.  A general methodology for bootstrapping in non-parametric frontier models , 2000 .

[38]  A. U.S.,et al.  FORMULATION AND ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION FUNCTION MODELS , 2001 .

[39]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[40]  Scott E. Atkinson,et al.  Stochastic estimation of firm technology, inefficiency, and productivity growth using shadow cost and distance functions , 2002 .

[41]  P. Hall,et al.  Estimating a Changepoint, Boundary, or Frontier in the Presence of Observation Error , 2002 .

[42]  P. W. Wilson,et al.  Asymptotics for DEA estimators in non-parametric frontier models , 2003 .

[43]  Léopold Simar,et al.  Detecting Outliers in Frontier Models: A Simple Approach , 2003 .

[44]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[45]  Léopold Simar,et al.  Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach , 2005 .

[46]  Jeffrey S. Racine,et al.  Nonparametric estimation of regression functions with both categorical and continuous data , 2004 .

[47]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[48]  Léopold Simar,et al.  Estimation and inference in cross-sectional, stochastic frontier models , 2005 .

[49]  L. Simar,et al.  Linearly interpolated FDH efficiency score for nonconvex frontiers , 2006 .

[50]  Léopold Simar,et al.  Nonparametric stochastic frontiers: A local maximum likelihood approach , 2007 .

[51]  L. Simar,et al.  Nonparametric efficiency analysis: a multivariate conditional quantile approach , 2007 .

[52]  Léopold Simar,et al.  Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications , 2007 .

[53]  P. W. Wilson,et al.  Inferences from Cross-Sectional, Stochastic Frontier Models , 2009 .