Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with AlGaN or AlInGaN electronic blocking layers

The effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with Al0.2Ga0.8N or AlInGaN electronic blocking layers have been investigated numerically by employing an advanced device simulation program. The simulation results indicate that the characteristics of InGaN quantum-well laser can be improved by using the AlInGaN electronic blocking layer. When the aluminum and indium compositions in AlInGaN electronic blocking layer are appropriately designed, the built-in charge density at the interface between InGaN barrier and AlInGaN electronic blocking layer can be reduced. Under this circumstance, the electron leakage and threshold current can be decreased obviously as compared with the laser structure with conventional Al0.2Ga0.8N electronic blocking layer when the built-in polarization is taken into account in our simulation. On the other hand, the AlInGaN electronic blocking layer also gives higher refractive index than the Al0.2Ga0.8N electronic blocking layer. Therefore, higher quantum-well optical confinement factor can be obtained by using the AlInGaN electronic blocking layer as well.

[1]  Michael Kneissl,et al.  Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy , 2002 .

[2]  A. Di Carlo,et al.  Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures , 1999 .

[3]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[4]  Joachim Piprek,et al.  Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation , 2003 .

[5]  Oliver Ambacher,et al.  Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .

[6]  S. Kamiyama,et al.  UV laser diode with 350.9-nm-lasing wavelength grown by hetero-epitaxial-lateral overgrowth technology , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  James S. Speck,et al.  Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors , 2000 .

[8]  Shun Lien Chuang,et al.  EFFECTIVE-MASS HAMILTONIAN FOR STRAINED WURTZITE GAN AND ANALYTICAL SOLUTIONS , 1996 .

[9]  Seoung-Hwan Park,et al.  Theory and experiment of In/sub 1-x/Ga/sub x/As/sub y/P/sub 1-y/ and In/sub 1-x-y/Ga/sub x/Al/sub y/As long-wavelength strained quantum-well lasers , 1999 .

[10]  J. Piprek,et al.  Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers , 2006, IEEE Photonics Technology Letters.

[11]  M. Reiche,et al.  Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.

[12]  Su-Huai Wei,et al.  Valence band splittings and band offsets of AlN, GaN, and InN , 1996 .

[13]  Christiane Poblenz,et al.  Measurement of polarization charge and conduction-band offset at InxGa1−xN/GaN heterojunction interfaces , 2004 .

[14]  Ming-Fu Li,et al.  Electronic band structures and optical gain spectra of strained wurtzite GaN-Al/sub x/Ga/sub 1-x/N quantum-well lasers , 1998 .

[15]  Yen-Kuang Kuo,et al.  Effect of band-offset ratio on analysis of violet–blue InGaN laser characteristics , 2004 .

[16]  Detlef Hommel,et al.  High-quality bulk a-plane GaN sliced from boules in comparison to heteroepitaxially grown thick films on r-plane sapphire , 2006 .

[17]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[18]  Masao Ikeda,et al.  100-mW kink-free blue-violet laser diodes with low aspect ratio , 2003 .

[19]  Joachim Piprek,et al.  Refractive index of AlGaInN alloys , 1996 .

[20]  Shun Lien Chuang,et al.  Optical gain of strained wurtzite GaN quantum-well lasers , 1996 .

[21]  James S. Speck,et al.  Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire , 2002 .

[22]  James S. Speck,et al.  Defect reduction in nonpolar a-plane GaN films using in situ SiNx nanomask , 2006 .

[23]  Chih-Min Chuang,et al.  Piezoelectric effects in the optical properties of strained InGaN quantum wells , 1999 .

[24]  Y.J. Park,et al.  Single-mode blue-violet laser diodes with low beam divergence and high COD level , 2006, IEEE Photonics Technology Letters.

[25]  Larry A. Coldren,et al.  Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures , 1998 .

[26]  Shun Lien Chuang,et al.  k.p method for strained wurtzite semiconductors , 1996 .

[27]  Sandor Kokenyesi,et al.  Fully-screened polarization-induced electric fields in blue∕violet InGaN∕GaN light-emitting devices grown on bulk GaN , 2005 .