An introduction into optimal control for quantum technologies

In this series of lectures, we would like to introduce the audience to quantum optimal control. The first lecture will cover basic ideas and principles of optimal control with the goal of demystifying its jargon. The second lecture will describe computational tools (for computations both on paper and in a computer) for its implementation as well as their conceptual background. The third chapter will go through a series of popular examples from different applications of quantum technology.

[1]  L. S. Theis,et al.  Simultaneous gates in frequency-crowded multilevel systems using fast, robust, analytic control shapes , 2016 .

[2]  Mads Kock Pedersen,et al.  Exploring the quantum speed limit with computer games , 2015, Nature.

[3]  S Montangero,et al.  Information theoretical analysis of quantum optimal control. , 2014, Physical review letters.

[4]  Antti O Niskanen,et al.  Optimal multiqubit operations for Josephson charge qubits. , 2003, Physical review letters.

[5]  D. Tannor,et al.  Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. , 2018, Physical review letters.

[6]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[7]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[8]  P. Rebentrost,et al.  Optimal control of a qubit coupled to a two-level fluctuator , 2006 .

[9]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[10]  Pulse-Sequence Optimization with Analytical Derivatives. Application to Deuterium Decoupling in Oriented Phases , 1996 .

[11]  F. Motzoi Controlling Quantum Information Devices , 2012 .

[12]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[13]  Christiane P. Koch,et al.  Krotov: A Python implementation of Krotov's method for quantum optimal control , 2019, SciPost Physics.

[14]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[15]  Warren S. Warren,et al.  Effects of arbitrary laser or NMR pulse shapes on population inversion and coherence , 1984 .

[16]  Carmen M. Tesch,et al.  Applying optimal control theory for elements of quantum computation in molecular systems , 2001 .

[17]  Jacob Sherson,et al.  Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates , 2018, Physical Review A.

[18]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[19]  O. Moussa,et al.  Robust and efficient in situ quantum control , 2014, 1409.3172.

[20]  Tommaso Calarco,et al.  Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape , 2015, 1506.04601.

[21]  K. Aizu,et al.  Parameter Differentiation of Quantum‐Mechanical Linear Operators , 1963 .

[22]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[23]  Felix Motzoi,et al.  High-fidelity quantum gates in the presence of dispersion , 2012 .

[24]  A. I. Solomon,et al.  Degrees of controllability for quantum systems and application to atomic systems , 2001 .

[25]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[26]  Per J. Liebermann,et al.  Optimized cross-resonance gate for coupled transmon systems , 2017, 1701.01841.

[27]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[28]  J. M. Gambetta,et al.  Optimal control methods for rapidly time-varying Hamiltonians , 2011, 1102.0584.

[29]  Rocco Piazza,et al.  Personalized Therapy Design for Liquid Tumors via Optimal Control Theory , 2019, bioRxiv.

[30]  N. Khaneja,et al.  Optimal control for generating quantum gates in open dissipative systems , 2006, quant-ph/0609037.

[31]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[32]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[33]  Simon Schmitt,et al.  Qudi: A modular python suite for experiment control and data processing , 2016, SoftwareX.

[34]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[35]  Erik Lucero,et al.  Reduced phase error through optimized control of a superconducting qubit , 2010, 1007.1690.

[36]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[37]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[38]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[39]  B. Andresen,et al.  Optimal control of the parametric oscillator , 2011 .

[40]  B. Hall Lie Groups, Lie Algebras, and Representations , 2003 .

[41]  D J Egger,et al.  Adaptive hybrid optimal quantum control for imprecisely characterized systems. , 2014, Physical review letters.

[42]  V. Galitski,et al.  Exact solution for quantum dynamics of a periodically driven two-level system , 2010, 1005.0652.

[43]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[44]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[45]  Frank K. Wilhelm,et al.  Optimal Qubit Control Using Single-Flux Quantum Pulses , 2015, 1512.05495.

[46]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[47]  S. Lloyd,et al.  Quantum limits to dynamical evolution , 2002, quant-ph/0210197.

[48]  Felix Motzoi,et al.  Improving frequency selection of driven pulses using derivative-based transition suppression , 2013, 1310.8363.

[49]  Samuel H. Tersigni,et al.  Wavepacket dancing: Achieving chemical selectivity by shaping light pulses , 1989 .

[50]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[51]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[52]  Joel J. Wallman,et al.  Bounding quantum gate error rate based on reported average fidelity , 2015, 1501.04932.

[53]  Zijun Chen,et al.  Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. , 2015, Physical review letters.

[54]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[55]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[56]  E. Rico,et al.  Lattice gauge tensor networks , 2014, 1404.7439.

[57]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[58]  F. K. Wilhelm,et al.  Complete randomized benchmarking protocol accounting for leakage errors , 2015, 1505.00580.

[59]  Luigi Frunzio,et al.  Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .

[60]  Christiane P. Koch,et al.  Hybrid benchmarking of arbitrary quantum gates , 2016, 1606.03927.

[61]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.