Obfuscation from Low Noise Multilinear Maps

Multilinear maps enable homomorphic computation on encoded values and a public procedure to check if the computation on the encoded values results in a zero. Encodings in known candidate constructions of multilinear maps have a (growing) noise component, which is crucial for security. For example, noise in GGH13 multilinear maps grows with the number of levels that need to be supported and must remain below the maximal noise supported by the multilinear map for correctness. A smaller maximal noise, which must be supported, is desirable both for reasons of security and efficiency.

[1]  Dorit Aharonov,et al.  Lattice problems in NP ∩ coNP , 2005, JACM.

[2]  Rafael Pass,et al.  Indistinguishability Obfuscation from Semantically-Secure Multilinear Encodings , 2014, CRYPTO.

[3]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[4]  Phong Q. Nguyen,et al.  Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures , 2009, Journal of Cryptology.

[5]  Allison Bishop,et al.  Indistinguishability Obfuscation from the Multilinear Subgroup Elimination Assumption , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[6]  Zvika Brakerski,et al.  Obfuscating Circuits via Composite-Order Graded Encoding , 2015, TCC.

[7]  Allison Bishop,et al.  Witness Encryption from Instance Independent Assumptions , 2014, IACR Cryptol. ePrint Arch..

[8]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[9]  Craig Gentry,et al.  Cryptanalysis of the Revised NTRU Signature Scheme , 2002, EUROCRYPT.

[10]  Eric Miles,et al.  Secure Obfuscation in a Weak Multilinear Map Model , 2016, TCC.

[11]  Ran Canetti,et al.  Obfuscation of Probabilistic Circuits and Applications , 2015, TCC.

[12]  Mehdi Tibouchi,et al.  Cryptanalysis of GGH15 Multilinear Maps , 2016, CRYPTO.

[13]  Stefano Tessaro,et al.  Indistinguishability Obfuscation from Trilinear Maps and Block-Wise Local PRGs , 2017, CRYPTO.

[14]  Jean-Sébastien Coron,et al.  Practical Multilinear Maps over the Integers , 2013, CRYPTO.

[15]  Dan Boneh,et al.  Applications of Multilinear Forms to Cryptography , 2002, IACR Cryptol. ePrint Arch..

[16]  Yuval Ishai,et al.  Optimizing Obfuscation: Avoiding Barrington's Theorem , 2014, CCS.

[17]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[18]  Zvika Brakerski,et al.  Shorter Circuit Obfuscation in Challenging Security Models , 2016, SCN.

[19]  Jean-Sébastien Coron,et al.  New Multilinear Maps Over the Integers , 2015, CRYPTO.

[20]  Nicolas Gama,et al.  Lattice Enumeration Using Extreme Pruning , 2010, EUROCRYPT.

[21]  Craig Gentry,et al.  Discrete Gaussian Leftover Hash Lemma over Infinite Domains , 2013, ASIACRYPT.

[22]  Yael Tauman Kalai,et al.  Protecting Obfuscation against Algebraic Attacks , 2014, EUROCRYPT.

[23]  Craig Gentry,et al.  Trapdoors for hard lattices and new cryptographic constructions , 2008, IACR Cryptol. ePrint Arch..

[24]  Philip N. Klein,et al.  Finding the closest lattice vector when it's unusually close , 2000, SODA '00.

[25]  Eric Miles,et al.  Post-zeroizing Obfuscation: New Mathematical Tools, and the Case of Evasive Circuits , 2016, EUROCRYPT.

[26]  Brent Waters,et al.  Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[27]  Chris Peikert,et al.  An Efficient and Parallel Gaussian Sampler for Lattices , 2010, CRYPTO.

[28]  Léo Ducas,et al.  On the Statistical Leak of the GGH13 Multilinear Map and some Variants , 2018, IACR Cryptol. ePrint Arch..

[29]  Guy N. Rothblum,et al.  Virtual Black-Box Obfuscation for All Circuits via Generic Graded Encoding , 2014, TCC.

[30]  Huijia Lin,et al.  Indistinguishability Obfuscation from SXDH on 5-Linear Maps and Locality-5 PRGs , 2017, CRYPTO.

[31]  Craig Gentry,et al.  Graph-Induced Multilinear Maps from Lattices , 2015, TCC.

[32]  Martin R. Albrecht,et al.  A Subfield Lattice Attack on Overstretched NTRU Assumptions - Cryptanalysis of Some FHE and Graded Encoding Schemes , 2016, CRYPTO.

[33]  Craig Gentry,et al.  Zeroizing Without Low-Level Zeroes: New MMAP Attacks and their Limitations , 2015, CRYPTO.

[34]  Jung Hee Cheon,et al.  Cryptanalysis of the Multilinear Map over the Integers , 2014, EUROCRYPT.

[35]  Brice Minaud,et al.  Cryptanalysis of the New CLT Multilinear Map over the Integers , 2016, EUROCRYPT.

[36]  Sanjam Garg Candidate Multilinear Maps , 2015 .

[37]  Craig Gentry,et al.  Candidate Multilinear Maps from Ideal Lattices , 2013, EUROCRYPT.

[38]  Yupu Hu,et al.  Cryptanalysis of GGH Map , 2016, EUROCRYPT.

[39]  Huijia Lin,et al.  Indistinguishability Obfuscation from Constant-Degree Graded Encoding Schemes , 2016, EUROCRYPT.

[40]  Phong Q. Nguyen,et al.  Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures , 2006, EUROCRYPT.

[41]  Oded Regev,et al.  New lattice based cryptographic constructions , 2003, STOC '03.

[42]  Dorit Aharonov,et al.  Lattice Problems in NP cap coNP , 2004, FOCS.

[43]  Eric Miles,et al.  Post-Zeroizing Obfuscation: The case of Evasive Circuits , 2015, IACR Cryptol. ePrint Arch..

[44]  Dan Boneh,et al.  Linearly Homomorphic Signatures over Binary Fields and New Tools for Lattice-Based Signatures , 2011, Public Key Cryptography.

[45]  Joe Zimmerman,et al.  How to Obfuscate Programs Directly , 2015, EUROCRYPT.

[46]  Vinod Vaikuntanathan,et al.  Indistinguishability Obfuscation from DDH-Like Assumptions on Constant-Degree Graded Encodings , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[47]  Amit Sahai,et al.  Projective Arithmetic Functional Encryption and Indistinguishability Obfuscation from Degree-5 Multilinear Maps , 2017, EUROCRYPT.

[48]  Pierre-Alain Fouque,et al.  Comparison between Subfield and Straightforward Attacks on NTRU , 2016, IACR Cryptol. ePrint Arch..

[49]  Léo Ducas,et al.  Learning a Zonotope and More: Cryptanalysis of NTRUSign Countermeasures , 2012, ASIACRYPT.

[50]  Ron Steinfeld,et al.  GGHLite: More Efficient Multilinear Maps from Ideal Lattices , 2014, IACR Cryptol. ePrint Arch..

[51]  Sanjam Garg,et al.  Obfuscation without the Vulnerabilities of Multilinear Maps , 2016, IACR Cryptol. ePrint Arch..

[52]  Eric Miles,et al.  Annihilation Attacks for Multilinear Maps: Cryptanalysis of Indistinguishability Obfuscation over GGH13 , 2016, CRYPTO.

[53]  Ron Steinfeld,et al.  Making NTRU as Secure as Worst-Case Problems over Ideal Lattices , 2011, EUROCRYPT.