Ice crystallization under cryogenic cooling in lipid membrane nanoconfined geometry: Time-resolved structural dynamics.

[1]  H. Ghasemi,et al.  Freezing of few nanometers water droplets , 2021, Nature Communications.

[2]  V. Prakapenka,et al.  Structure and properties of two superionic ice phases , 2021, Nature Physics.

[3]  T. Hansen The everlasting hunt for new ice phases , 2021, Nature Communications.

[4]  C. Benmore,et al.  Structure of ice confined in silica nanopores. , 2021, Physical chemistry chemical physics : PCCP.

[5]  T. Loerting,et al.  Open questions on the structures of crystalline water ices , 2020, Communications Chemistry.

[6]  G. Zaccai,et al.  Behavior of Hydrated Lipid Bilayers at Cryogenic Temperatures , 2020, Frontiers in Chemistry.

[7]  S. Huband,et al.  X-ray diffraction to probe the kinetics of ice recrystallization inhibition. , 2020, The Analyst.

[8]  M. Catti,et al.  Cubic ice Ic without stacking defects obtained from ice XVII , 2019, Nature Materials.

[9]  A. Angelova,et al.  Pep‐Lipid Cubosomes and Vesicles Compartmentalized by Micelles from Self‐Assembly of Multiple Neuroprotective Building Blocks Including a Large Peptide Hormone PACAP‐DHA , 2019, ChemNanoMat.

[10]  A. Angelova,et al.  Cubic Liquid Crystalline Nanostructures Involving Catalase and Curcumin: BioSAXS Study and Catalase Peroxidatic Function after Cubosomal Nanoparticle Treatment of Differentiated SH-SY5Y Cells , 2019, Molecules.

[11]  J. Grabowska Why is the cubic structure preferred in newly formed ice? , 2019, Physical chemistry chemical physics : PCCP.

[12]  M. Śliwińska-Bartkowiak,et al.  Structural properties of ice in confinement , 2019, Journal of Molecular Liquids.

[13]  Sagar Satpathi,et al.  Impact of Topology on the Characteristics of Water inside Cubic Lyotropic Liquid Crystalline Systems. , 2019, The journal of physical chemistry. B.

[14]  E. Landau,et al.  Soft biomimetic nanoconfinement promotes amorphous water over ice , 2019, Nature Nanotechnology.

[15]  Hakan Atakisi,et al.  Ice formation and solvent nanoconfinement in protein crystals , 2019, IUCrJ.

[16]  J. Lee,et al.  A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration , 2018, Nature Energy.

[17]  V. Molinero,et al.  Ice-Liquid Oscillations in Nanoconfined Water. , 2018, ACS nano.

[18]  Andrew H. Nguyen,et al.  Role of stacking disorder in ice nucleation , 2017, Nature.

[19]  P. Albouy,et al.  Freezing-induced self-assembly of amphiphilic molecules. , 2017, Soft matter.

[20]  E. Stura,et al.  Comparison of helical scan and standard rotation methods in single-crystal X-ray data collection strategies. , 2017, Journal of synchrotron radiation.

[21]  I. Voets,et al.  Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins , 2016, Proceedings of the National Academy of Sciences.

[22]  I. Vetter,et al.  Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization , 2015, Biophysical journal.

[23]  Valeria Molinero,et al.  Stacking disorder in ice I. , 2015, Physical chemistry chemical physics : PCCP.

[24]  Andrzej Falenty,et al.  Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate , 2014, Nature.

[25]  Gwyndaf Evans,et al.  Membrane protein structure determination — The next generation , 2014, Biochimica et biophysica acta.

[26]  P. Fromme,et al.  Crystallization of the large membrane protein complex photosystem I in a microfluidic channel. , 2013, ACS nano.

[27]  C. Giacovazzo,et al.  EXPO2013: a kit of tools for phasing crystal structures from powder data , 2013 .

[28]  Debbie J. Stokes,et al.  Ice structures, patterns, and processes: A view across the icefields , 2012, 1207.3738.

[29]  T. L. Malkin,et al.  Structure of ice crystallized from supercooled water , 2012, Proceedings of the National Academy of Sciences.

[30]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[31]  S. Lesieur,et al.  SAXS investigation of a cubic to a sponge (L3) phase transition in self-assembled lipid nanocarriers. , 2011, Physical chemistry chemical physics : PCCP.

[32]  Didier Nurizzo,et al.  MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments , 2010, Journal of synchrotron radiation.

[33]  Kai Welke,et al.  Freezing, melting and structure of ice in a hydrophilic nanopore. , 2010, Physical chemistry chemical physics : PCCP.

[34]  K. Morishige,et al.  Stability of Cubic Ice in Mesopores , 2009 .

[35]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[36]  A. Bertram,et al.  Formation and stability of cubic ice in water droplets. , 2006, Physical chemistry chemical physics : PCCP.

[37]  M. Leser,et al.  Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m). , 2006, Langmuir : the ACS journal of surfaces and colloids.

[38]  M. Weik,et al.  Liquid-like water confined in stacks of biological membranes at 200 k and its relation to protein dynamics. , 2005, Biophysical journal.

[39]  R. Winter,et al.  Kinetics of lamellar-to-cubic and intercubic phase transitions of pure and cytochrome c containing monoolein dispersions monitored by time-resolved small-angle X-ray diffraction. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[40]  Benjamin J. Murray,et al.  The formation of cubic ice under conditions relevant to Earth's atmosphere , 2005, Nature.

[41]  A. Angelova,et al.  Structural organization of proteocubosome carriers involving medium- and large-size proteins , 2005 .

[42]  P. Ahlström,et al.  Crystallization Kinetics of Thin Amorphous Water Films on Surfaces , 2003 .

[43]  M. Caffrey,et al.  The phase diagram of the monoolein/water system: metastability and equilibrium aspects. , 2000, Biomaterials.

[44]  Almgren,et al.  Phase Behavior and Aggregate Structure in Aqueous Mixtures of Sodium Cholate and Glycerol Monooleate. , 1999, Journal of colloid and interface science.

[45]  K. Morishige,et al.  X-ray diffraction studies of freezing and melting of water confined in a mesoporous adsorbent (MCM-41) , 1997 .

[46]  Hiroshi Takahashi,et al.  Behavior of ice-water transition in dimyristoylphosphatidylethanolamine-water system , 1997 .

[47]  J. Baker,et al.  Nucleation of Ice in Confined Geometry , 1997 .

[48]  J. Rosenbusch,et al.  Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  W. Bras,et al.  A combined SAXS/WAXS investigation of the phase behaviour of di-polyenoic membrane lipids. , 1996, Biochimica et biophysica acta.

[50]  S. Erramilli,et al.  Freezing and melting water in lamellar structures. , 1994, Biophysical journal.

[51]  Michielsen,et al.  Small-angle x-ray scattering in the early stages of ice formation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[52]  K. Larsson Cubic lipid-water phases: structures and biomembrane aspects , 1989 .

[53]  J. Finney,et al.  HIGH-RESOLUTION NEUTRON POWDER DIFFRACTION STUDY OF ICE Ic , 1987 .

[54]  D. Small Lateral chain packing in lipids and membranes. , 1984, Journal of lipid research.

[55]  K. Larsson,et al.  Two cubic phases in monoolein–water system , 1983, Nature.

[56]  T. McIntosh,et al.  A bicontinuous tetrahedral structure in a liquid-crystalline lipid , 1983, Nature.

[57]  A. Rinfret,et al.  Low-Temperature Forms of Ice as Studied by X-Ray Diffraction , 1960, Nature.