Performance comparison of memetic algorithms

Local search techniques have been applied in optimization methods. The effect of local search to the memetic algorithms can make multimodal and non-linear problems easier to solve. Parameters considered include the effect of population size and recombination mechanisms. Experiments comparing three local search techniques for a memetic algorithm are represent. Further, we have adopted a global parallelization approach that preserves the properties, behavior, and fundamental of the sequential algorithm.

[1]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[2]  Enrique Alba,et al.  A survey of parallel distributed genetic algorithms , 1999, Complex..

[3]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[4]  Emile H. L. Aarts,et al.  Genetic Local Search Algorithms for the Travelling Salesman Problem , 1990, PPSN.

[5]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[6]  Vassilios Petridis,et al.  Co-operating Populations with Different Evolution Behaviours , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[7]  A. Dickson On Evolution , 1884, Science.

[8]  L. Darrell Whitley,et al.  Lamarckian Evolution, The Baldwin Effect and Function Optimization , 1994, PPSN.

[9]  Pablo Moscato A memetic approach for the travelling salesman problem implementation of a computational ecology for , 1992 .

[10]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[11]  Patrick D. Surry,et al.  Formal Memetic Algorithms , 1994, Evolutionary Computing, AISB Workshop.

[12]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[13]  Christopher M. Brown,et al.  Parallel genetic algorithms on distributed-memory architectures , 1993 .

[14]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[15]  Pablo Moscato,et al.  Memetic algorithms using guided local search: a case study , 1999 .

[16]  Keith E. Mathias,et al.  In Parallel Problem Solving from Nature-PPSN III , 1994 .

[17]  Lourdes Araujo,et al.  A hybrid evolutionary approach for solving constrained optimization problems over finite domains , 2000, IEEE Trans. Evol. Comput..

[18]  Theodore C. Belding,et al.  The Distributed Genetic Algorithm Revisited , 1995, ICGA.

[19]  Enrique Alba,et al.  Utilizing Dynastically Optimal Forma Recombination in Hybrid Genetic Algorithms , 1998, PPSN.

[20]  Konstantinos G. Margaritis,et al.  An Experimental Study of Benchmarking Functions for Genetic Algorithms , 2002, Int. J. Comput. Math..

[21]  Laxmikant V. Kale,et al.  Parallel problem solving , 1990 .

[22]  Mateo Valero,et al.  Parallel computing and transputer applications , 1992 .

[23]  Takeshi Yamada,et al.  Scheduling by Genetic Local Search with Multi-Step Crossover , 1996, PPSN.

[24]  Erik D. Goodman,et al.  Investigating Parallel Genetic Algorithms on Job Shop Scheduling Problems , 1997, Evolutionary Programming.

[25]  P. Moscato,et al.  Comparing metaheuristic approaches for parallel machine scheduling problems , 2022 .

[26]  Paul Bryant Grosso,et al.  Computer Simulations of Genetic Adaptation: Parallel Subcomponent Interaction in a Multilocus Model , 1985 .

[27]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[28]  Nicholas J. Radcliffe,et al.  Forma Analysis and Random Respectful Recombination , 1991, ICGA.

[29]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[30]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  P. Moscato,et al.  The number partitioning problem: an open challenge for evolutionary computation? , 1999 .

[33]  Erwin Pesch,et al.  Genetic Local Search in Combinatorial Optimization , 1994, Discret. Appl. Math..

[34]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[35]  David L. Levine,et al.  Users guide to the PGAPack parallel genetic algorithm library , 1995 .

[36]  Runhe Huang,et al.  Implementing the Genetic Algorithm on Transputer Based Parallel Processing Systems , 1990, PPSN.

[37]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[38]  Bernd Freisleben,et al.  Fitness landscapes and memetic algorithm design , 1999 .

[39]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .