Ab initio study of bond stretching: Implications in force‐field parametrization for molecular mechanics and dynamics

We report a theoretical study of the stretching of chemical bonds and its implications on the force‐field parametrization. Computations were performed at the SCF and MCSCF levels by using minimal, split‐valence, and large extended and polarized basis sets. The stretching energy profiles were determined considering up to 25 perturbed geometries of 11 different bonds (6 singles, 2 doubles, and 3 triples). The energy profiles and stretching parameters are compared with the experimental data compiled in the most popular force fields. MCSCF stretching energy profiles are mainly anharmonic and can be only roughly reproduced by quadratic equations. The use of Allinger's MM2 quasiharmonic expression appears as the best choice because it fits with reasonable accuracy a large percentage of the stretching profile without increasing the complexity of the formalism and of the parametrization procedure. MCSCF computations are needed to obtain reliable stretching force parameters. In this respect, MCSCF calculations considering as active space only the bonded and nonbonded orbitals of the perturbed bond seems to be the best strategy to obtain good results at a minimum computational cost, especially if small split‐valence basis sets like the 3‐21G are used. Results obtained at this level of sophistication are completely comparable to stretching parameters compiled on empirical force fields. © 1993 John Wiley & Sons, Inc.

[1]  P. Pulay,et al.  A systematic study of the convergence and additivity of correlation and basis set effects on the force constants of small molecules: HF, HCN, and NH3 , 1983 .

[2]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[3]  Luis Carballeira,et al.  Molecular mechanics (MM2) and conformational analysis of compounds with NCO units. Parametrization of the force field and anomeric effect , 1990 .

[4]  Z. Latajka,et al.  On the reliability of SCF ab initio calculations of vibrational frequencies and intensities of hydrogen-bonded systems , 1989 .

[5]  A. J. Hopfinger,et al.  Molecular mechanics force‐field parameterization procedures , 1984 .

[6]  C. Alemán,et al.  A new strategy for the evaluation of force parameters from quantum mechanical computations , 1991 .

[7]  W. Ashman,et al.  Molecular mechanics parameterization: Bond lengths and angles for nitrogen and phosphorus containing compounds , 1990 .

[8]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[9]  P. Pulay,et al.  AB Initio Vibrational Force Fields , 1984 .

[10]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[11]  Norman L. Allinger,et al.  A molecular mechanics force field (MM3) for alcohols and ethers , 1990 .

[12]  J. Wendoloski,et al.  Molecular Dynamics in Ordered Structures: Computer Simulation and Experimental Results for Nylon 66 Crystals , 1990, Science.

[13]  R. Parr,et al.  Hardnesses from electrostatic potentials , 1991 .

[14]  U. Dinur Atomic multipoles and perpendicular electrostatic forces in diatomic and planar molecules , 1991 .

[15]  A. Lowrey,et al.  Effects of hydration on scale factors for ab initio force constants , 1991 .

[16]  J. Mccammon,et al.  Dynamics of Proteins and Nucleic Acids , 2018 .

[17]  Klaus Gundertofte,et al.  A comparison of conformational energies calculated by molecular mechanics (MM2(85), Sybyl 5.1, Sybyl 5.21, and ChemX) and semiempirical (AM1 and PM3) methods , 1991 .

[18]  Jenn-Huei Lii,et al.  The MM3 force field for amides, polypeptides and proteins , 1991 .

[19]  Frank A. Momany,et al.  Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid , 1978 .

[20]  S. Krimm,et al.  Construction of molecular mechanics energy functions by mathematical transformation of ab initio force fields and structures , 1991 .

[21]  Peter A. Kollman,et al.  Many-body potential for molecular interactions , 1988 .

[22]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[23]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[24]  K. Esselink,et al.  Computer simulations of a water/oil interface in the presence of micelles , 1990, Nature.

[25]  J. Moult,et al.  Computer simulation of the solvent structure around biological macromolecules , 1978, Nature.

[26]  C. Raychaudhury,et al.  Discrimination of isomeric structures using information theoretic topological indices , 1984 .

[27]  Arnold T. Hagler,et al.  Direct evaluation of nonbonding interactions from ab initio calculations , 1989 .

[28]  H. Scheraga,et al.  A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests. , 1989, Journal of biomolecular structure & dynamics.

[29]  R. Bartlett,et al.  The quartic force field of H2O determined by many‐body methods that include quadruple excitation effects , 1979 .

[30]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[31]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[32]  Henry F. Schaefer,et al.  A systematic theoretical study of harmonic vibrational frequencies: The ammonium ion NH4+ and other simple molecules , 1980 .

[33]  Norman L. Allinger,et al.  MOLECULAR MECHANICS (MM3) CALCULATIONS ON ALDEHYDES AND KETONES , 1991 .

[34]  Modesto Orozco,et al.  On the suitability of semiempirical calculations as sources of force field parameters , 1992, J. Comput. Aided Mol. Des..

[35]  H A Scheraga,et al.  A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. I. Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9. , 1989, Journal of biomolecular structure & dynamics.

[36]  B. Roos,et al.  MCSCF and multi-reference CI calculations of the potential energy surface for ground state H2O , 1982 .

[37]  Jacopo Tomasi,et al.  Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes , 1982 .

[38]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[39]  R. Gleiter E. Pretsch, T. Clerc, J. Seibl und W. Simon: Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden. Springer Verlag, Berlin‐Heidelberg‐New York 1976. 312 S., Preis: DM 28,—. , 1977 .

[40]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[41]  A. Warshel,et al.  Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor. , 1985, Journal of molecular biology.

[42]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[43]  Lee Griffiths,et al.  Approaches to charge calculations in molecular mechanics , 1982 .

[44]  Odd Gropen,et al.  Gaussian basis sets for the fifth row elements, Mo‐Cd, and the sixth row elements W‐RN , 1987 .

[45]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[46]  Modesto Orozco,et al.  Effect of electron correlation on the electrostatic potential distribution of molecules , 1991 .

[47]  P. Bagus,et al.  Force constants for the symmetric stretch motions of acetylene: Accurate ab initio calculations , 1977 .

[48]  H. Scheraga,et al.  Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids , 1983 .

[49]  J A McCammon,et al.  Computer-aided molecular design. , 1987, Science.

[50]  Modesto Orozco,et al.  On the use of AM1 and MNDO wave functions to compute accurate electrostatic charges , 1990 .

[51]  P. Pulay,et al.  Cubic force constants and equilibrium geometry of methane from Hartree–Fock and correlated wavefunctions , 1978 .

[52]  William L. Jorgensen,et al.  OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform , 1991 .

[53]  M. Challacombe,et al.  Coordinate transformations of cubic force constants and transferability of anharmonic force constants in internal coordinates , 1991 .

[54]  A. T. Hagler,et al.  A novel decomposition of torsional potentials into pairwise interactions: A study of energy second derivatives , 1990 .