Ab initio study of bond stretching: Implications in force‐field parametrization for molecular mechanics and dynamics
暂无分享,去创建一个
[1] P. Pulay,et al. A systematic study of the convergence and additivity of correlation and basis set effects on the force constants of small molecules: HF, HCN, and NH3 , 1983 .
[2] J. Stewart. Optimization of parameters for semiempirical methods II. Applications , 1989 .
[3] Luis Carballeira,et al. Molecular mechanics (MM2) and conformational analysis of compounds with NCO units. Parametrization of the force field and anomeric effect , 1990 .
[4] Z. Latajka,et al. On the reliability of SCF ab initio calculations of vibrational frequencies and intensities of hydrogen-bonded systems , 1989 .
[5] A. J. Hopfinger,et al. Molecular mechanics force‐field parameterization procedures , 1984 .
[6] C. Alemán,et al. A new strategy for the evaluation of force parameters from quantum mechanical computations , 1991 .
[7] W. Ashman,et al. Molecular mechanics parameterization: Bond lengths and angles for nitrogen and phosphorus containing compounds , 1990 .
[8] U. Singh,et al. A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .
[9] P. Pulay,et al. AB Initio Vibrational Force Fields , 1984 .
[10] H. Berendsen,et al. A consistent empirical potential for water–protein interactions , 1984 .
[11] Norman L. Allinger,et al. A molecular mechanics force field (MM3) for alcohols and ethers , 1990 .
[12] J. Wendoloski,et al. Molecular Dynamics in Ordered Structures: Computer Simulation and Experimental Results for Nylon 66 Crystals , 1990, Science.
[13] R. Parr,et al. Hardnesses from electrostatic potentials , 1991 .
[14] U. Dinur. Atomic multipoles and perpendicular electrostatic forces in diatomic and planar molecules , 1991 .
[15] A. Lowrey,et al. Effects of hydration on scale factors for ab initio force constants , 1991 .
[16] J. Mccammon,et al. Dynamics of Proteins and Nucleic Acids , 2018 .
[17] Klaus Gundertofte,et al. A comparison of conformational energies calculated by molecular mechanics (MM2(85), Sybyl 5.1, Sybyl 5.21, and ChemX) and semiempirical (AM1 and PM3) methods , 1991 .
[18] Jenn-Huei Lii,et al. The MM3 force field for amides, polypeptides and proteins , 1991 .
[19] Frank A. Momany,et al. Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid , 1978 .
[20] S. Krimm,et al. Construction of molecular mechanics energy functions by mathematical transformation of ab initio force fields and structures , 1991 .
[21] Peter A. Kollman,et al. Many-body potential for molecular interactions , 1988 .
[22] L. Onsager. Electric Moments of Molecules in Liquids , 1936 .
[23] J. Pople,et al. Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .
[24] K. Esselink,et al. Computer simulations of a water/oil interface in the presence of micelles , 1990, Nature.
[25] J. Moult,et al. Computer simulation of the solvent structure around biological macromolecules , 1978, Nature.
[26] C. Raychaudhury,et al. Discrimination of isomeric structures using information theoretic topological indices , 1984 .
[27] Arnold T. Hagler,et al. Direct evaluation of nonbonding interactions from ab initio calculations , 1989 .
[28] H. Scheraga,et al. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests. , 1989, Journal of biomolecular structure & dynamics.
[29] R. Bartlett,et al. The quartic force field of H2O determined by many‐body methods that include quadruple excitation effects , 1979 .
[30] R. S. Mulliken. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .
[31] M. Karplus,et al. Molecular dynamics simulations in biology , 1990, Nature.
[32] Henry F. Schaefer,et al. A systematic theoretical study of harmonic vibrational frequencies: The ammonium ion NH4+ and other simple molecules , 1980 .
[33] Norman L. Allinger,et al. MOLECULAR MECHANICS (MM3) CALCULATIONS ON ALDEHYDES AND KETONES , 1991 .
[34] Modesto Orozco,et al. On the suitability of semiempirical calculations as sources of force field parameters , 1992, J. Comput. Aided Mol. Des..
[35] H A Scheraga,et al. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. I. Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9. , 1989, Journal of biomolecular structure & dynamics.
[36] B. Roos,et al. MCSCF and multi-reference CI calculations of the potential energy surface for ground state H2O , 1982 .
[37] Jacopo Tomasi,et al. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes , 1982 .
[38] T. H. Dunning. Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .
[39] R. Gleiter. E. Pretsch, T. Clerc, J. Seibl und W. Simon: Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden. Springer Verlag, Berlin‐Heidelberg‐New York 1976. 312 S., Preis: DM 28,—. , 1977 .
[40] Norman L. Allinger,et al. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .
[41] A. Warshel,et al. Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor. , 1985, Journal of molecular biology.
[42] Norman L. Allinger,et al. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .
[43] Lee Griffiths,et al. Approaches to charge calculations in molecular mechanics , 1982 .
[44] Odd Gropen,et al. Gaussian basis sets for the fifth row elements, Mo‐Cd, and the sixth row elements W‐RN , 1987 .
[45] M. Karplus,et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .
[46] Modesto Orozco,et al. Effect of electron correlation on the electrostatic potential distribution of molecules , 1991 .
[47] P. Bagus,et al. Force constants for the symmetric stretch motions of acetylene: Accurate ab initio calculations , 1977 .
[48] H. Scheraga,et al. Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids , 1983 .
[49] J A McCammon,et al. Computer-aided molecular design. , 1987, Science.
[50] Modesto Orozco,et al. On the use of AM1 and MNDO wave functions to compute accurate electrostatic charges , 1990 .
[51] P. Pulay,et al. Cubic force constants and equilibrium geometry of methane from Hartree–Fock and correlated wavefunctions , 1978 .
[52] William L. Jorgensen,et al. OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform , 1991 .
[53] M. Challacombe,et al. Coordinate transformations of cubic force constants and transferability of anharmonic force constants in internal coordinates , 1991 .
[54] A. T. Hagler,et al. A novel decomposition of torsional potentials into pairwise interactions: A study of energy second derivatives , 1990 .