Perception and self-organized instability

This paper considers state-dependent dynamics that mediate perception in the brain. In particular, it considers the formal basis of self-organized instabilities that enable perceptual transitions during Bayes-optimal perception. The basic phenomena we consider are perceptual transitions that lead to conscious ignition (Dehaene and Changeux, 2011) and how they depend on dynamical instabilities that underlie chaotic itinerancy (Breakspear, 2001; Tsuda, 2001) and self-organized criticality (Beggs and Plenz, 2003; Plenz and Thiagarajan, 2007; Shew et al., 2011). Our approach is based on a dynamical formulation of perception as approximate Bayesian inference, in terms of variational free energy minimization. This formulation suggests that perception has an inherent tendency to induce dynamical instabilities (critical slowing) that enable the brain to respond sensitively to sensory perturbations. We briefly review the dynamics of perception, in terms of generalized Bayesian filtering and free energy minimization, present a formal conjecture about self-organized instability and then test this conjecture, using neuronal (numerical) simulations of perceptual categorization.

[1]  I. Fried,et al.  Neural “Ignition”: Enhanced Activation Linked to Perceptual Awareness in Human Ventral Stream Visual Cortex , 2009, Neuron.

[2]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[3]  Michael Breakspear,et al.  Perception of Odors by a Nonlinear Model of the Olfactory Bulb , 2001, Int. J. Neural Syst..

[4]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[5]  Karl J. Friston,et al.  Action understanding and active inference , 2011, Biological Cybernetics.

[6]  Karl J. Friston,et al.  Attention, Uncertainty, and Free-Energy , 2010, Front. Hum. Neurosci..

[7]  H. Haken,et al.  Intentionality in non-equilibrium systems? The functional aspects of self-organized pattern formation , 2007 .

[8]  I. Tsuda Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. , 2001, The Behavioral and brain sciences.

[9]  Hermann Haken,et al.  Synergetics: An Introduction , 1983 .

[10]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[11]  Yonatan Sanz Perl,et al.  Reconstruction of physiological instructions from Zebra finch song. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Raymond J. Dolan,et al.  Dopamine, Affordance and Active Inference , 2012, PLoS Comput. Biol..

[13]  Woodrow L. Shew,et al.  Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches , 2010, The Journal of Neuroscience.

[14]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[15]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[16]  Kestutis Pyragas Conditional Lyapunov exponents from time series , 1997 .

[17]  Geoffrey E. Hinton,et al.  Parallel visual computation , 1983, Nature.

[18]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[19]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  A. Yuille,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Vision as Bayesian inference: analysis by synthesis? , 2022 .

[21]  Viktor K. Jirsa,et al.  A theoretical model of phase transitions in the human brain , 1994, Biological Cybernetics.

[22]  Ivan Tyukin,et al.  Parameter Estimation of Sigmoid Superpositions: Dynamical System Approach , 2003, Neural Computation.

[23]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[24]  James M. Jeanne,et al.  Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Karl J. Friston,et al.  Free-Energy and Illusions: The Cornsweet Effect , 2011, Front. Psychology.

[26]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  Jun Namikawa,et al.  Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  B Cessac,et al.  Lyapunov exponents and transport in the Zhang model of self-organized criticality. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  M. Breakspear "Dynamic" connectivity in neural systems: theoretical and empirical considerations. , 2004, Neuroinformatics.

[30]  S. Nara Can potentially useful dynamics to solve complex problems emerge from constrained chaos and/or chaotic itinerancy? , 2003, Chaos.

[31]  Claudius Gros,et al.  Cognitive Computation with Autonomously Active Neural Networks: An Emerging Field , 2009, Cognitive Computation.

[32]  K. Cheng Theory of Superconductivity , 1948, Nature.

[33]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[34]  W J Freeman,et al.  Characterization of state transitions in spatially distributed, chaotic, nonlinear, dynamical systems in cerebral cortex , 1994, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[35]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[36]  Andreas Daffertshofer,et al.  Generative Models of Cortical Oscillations: Neurobiological Implications of the Kuramoto Model , 2010, Front. Hum. Neurosci..

[37]  S. Bressler,et al.  Operational principles of neurocognitive networks. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[38]  R. Gregory Perceptions as hypotheses. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  Karl J. Friston,et al.  Generalised Filtering , 2010 .

[40]  Karl J. Friston,et al.  Perceptions as Hypotheses: Saccades as Experiments , 2012, Front. Psychology.

[41]  Karl J. Friston,et al.  Action and behavior: a free-energy formulation , 2010, Biological Cybernetics.

[42]  W. Ashby,et al.  Principles of the self-organizing dynamic system. , 1947, The Journal of general psychology.

[43]  Michael Breakspear,et al.  Dynamics of a neural system with a multiscale architecture , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  J. Changeux,et al.  Experimental and Theoretical Approaches to Conscious Processing , 2011, Neuron.

[45]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[46]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[47]  Junichiro Yoshimoto,et al.  Control of exploitation-exploration meta-parameter in reinforcement learning , 2002, Neural Networks.

[48]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[49]  L. L. Bologna,et al.  Self-organization and neuronal avalanches in networks of dissociated cortical neurons , 2008, Neuroscience.

[50]  Ichiro Tsuda,et al.  A Complex Systems Approach to an Interpretation of Dynamic Brain Activity I: Chaotic Itinerancy Can Provide a Mathematical Basis for Information Processing in Cortical Transitory and Nonstationary Dynamics , 2003, Summer School on Neural Networks.

[51]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[52]  Evelyn Sander,et al.  The geometry of chaos synchronization. , 2003, Chaos.

[53]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[54]  Karl J. Friston Hierarchical Models in the Brain , 2008, PLoS Comput. Biol..

[55]  Karl J. Friston,et al.  Free Energy, Value, and Attractors , 2011, Comput. Math. Methods Medicine.

[56]  A. G. Feldman,et al.  The origin and use of positional frames of reference in motor control , 1995, Behavioral and Brain Sciences.

[57]  Karl J. Friston,et al.  Frontiers in Neuroinformatics , 2022 .

[58]  P. Marler,et al.  Neuroscience of Birdsong , 2012 .

[59]  Mark T. Waters,et al.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited.Thislicensedoesnot permit commercial exploitation or the creation of derivative works without sp , 2009 .

[60]  Karl J. Friston,et al.  Cortical circuits for perceptual inference , 2009, Neural Networks.

[61]  Cees van Leeuwen,et al.  Chaos breeds autonomy: connectionist design between bias and baby-sitting , 2008, Cognitive Processing.

[62]  Gustavo Deco,et al.  Human Neuroscience Original Research Article Cortical Microcircuit Dynamics Mediating Binocular Rivalry: the Role of Adaptation in Inhibition , 2022 .

[63]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[64]  Ivan Tyukin,et al.  Invariant template matching in systems with spatiotemporal coding: A matter of instability , 2007, Neural Networks.

[65]  Gerhard Werner,et al.  Brain dynamics across levels of organization , 2007, Journal of Physiology-Paris.