Elastic Net Oriented to Fuzzy Semiparametric Regression Model With Fuzzy Explanatory Variables and Fuzzy Responses
暂无分享,去创建一个
[1] James J. Buckley,et al. Fuzzy regression using least absolute deviation estimators , 2007, Soft Comput..
[2] Thierry Denoeux,et al. Nonparametric regression analysis of uncertain and imprecise data using belief functions , 2004, Int. J. Approx. Reason..
[3] Pierpaolo D'Urso,et al. Linear regression analysis for fuzzy = crisp input and fuzzy = crisp output data , 2015 .
[4] Antonio-Francisco Roldán-López-de-Hierro,et al. A fuzzy regression model based on finite fuzzy numbers and its application to real-world financial data , 2017, J. Comput. Appl. Math..
[5] Difference Based Ridge and Liu Type Estimators in Semiparametric Regression Models , 2011 .
[6] S. M. Taheri,et al. FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS , 2012 .
[7] Chachi Jalal,et al. Multiple Fuzzy Regression Model for Fuzzy Input-Output Data , 2016 .
[8] M. Puri,et al. Differentials of fuzzy functions , 1983 .
[9] Seung-Hoe Choi,et al. LEAST ABSOLUTE DEVIATION ESTIMATOR IN FUZZY REGRESSION , .
[10] Mohammad Ghasem Akbari,et al. Linear Model With Exact Inputs and Interval-Valued Fuzzy Outputs , 2018, IEEE Transactions on Fuzzy Systems.
[11] R. Leardi,et al. Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data , 2002 .
[12] Ning Wang,et al. Fuzzy nonparametric regression based on local linear smoothing technique , 2007, Inf. Sci..
[13] Chiang Kao,et al. Least-squares estimates in fuzzy regression analysis , 2003, Eur. J. Oper. Res..
[14] Sabyasachi Ghoshray,et al. A linear regression model using triangular fuzzy number coefficients , 1999, Fuzzy Sets Syst..
[15] K. Takezawa,et al. Introduction to Nonparametric Regression , 2005 .
[16] Grace Wahba,et al. Spline Models for Observational Data , 1990 .
[17] Jin Hee Yoon,et al. The statistical inferences of fuzzy regression based on bootstrap techniques , 2015, Soft Comput..
[18] Mohammad Ghasem Akbari,et al. Fuzzy semi-parametric partially linear model with fuzzy inputs and fuzzy outputs , 2017, Expert Syst. Appl..
[19] Ebrahim Nasrabadi,et al. Fuzzy linear regression analysis: a multi-objective programming approach , 2005, Appl. Math. Comput..
[20] D. Massart,et al. Elimination of uninformative variables for multivariate calibration. , 1996, Analytical chemistry.
[21] Phil Diamond,et al. Fuzzy least squares , 1988, Inf. Sci..
[22] Hsien-Chung Wu. Linear regression analysis for fuzzy input and output data using the extension principle , 2003 .
[23] S. M. Taheri,et al. Fuzzy least-absolutes regression using shape preserving operations , 2012, Inf. Sci..
[24] Gemai Chen,et al. Semiparametric generalized least squares estimation in partially linear regression models with correlated errors , 2007 .
[25] K. S. Kula,et al. A Study on Fuzzy Robust Regression and Its Application to Insurance , 2012 .
[26] Wenyi Zeng,et al. Fuzzy least absolute linear regression , 2017, Appl. Soft Comput..
[27] P. Diamond,et al. Extended fuzzy linear models and least squares estimates , 1997 .
[28] Andrzej Bargiela,et al. Multiple regression with fuzzy data , 2007, Fuzzy Sets Syst..
[29] I. E. Frank. Intermediate least squares regression method , 1987 .
[30] Jeffrey D. Hart,et al. Trigonometric series regression estimators with an application to partially linear models , 1990 .
[31] Morteza Amini,et al. Optimal partial ridge estimation in restricted semiparametric regression models , 2015, J. Multivar. Anal..
[32] Robert Gould,et al. A Modern Approach to Regression with R , 2010 .
[33] Pierpaolo D'Urso,et al. A least-squares approach to fuzzy linear regression analysis , 2000 .
[34] J. Roger,et al. CovSel: Variable selection for highly multivariate and multi-response calibration: Application to IR spectroscopy , 2011 .
[35] Lana E. Melkumova,et al. Comparing Ridge and LASSO estimators for data analysis , 2017 .
[36] Jalal Chachi,et al. A fuzzy robust regression approach applied to bedload transport data , 2017, Commun. Stat. Simul. Comput..
[37] Ruili Wang,et al. An enhanced fuzzy linear regression model with more flexible spreads , 2009, Fuzzy Sets Syst..
[38] Jin Hee Yoon,et al. General fuzzy regression using least squares method , 2010, Int. J. Syst. Sci..
[39] Igor I Baskin,et al. The One‐Class Classification Approach to Data Description and to Models Applicability Domain , 2010, Molecular informatics.
[40] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[41] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[42] Mohammad Arashi,et al. Feasible ridge estimator in partially linear models , 2013, J. Multivar. Anal..
[43] Pierpaolo D'Urso,et al. Robust fuzzy regression analysis , 2011, Inf. Sci..
[44] Hsien-Chung Wu,et al. The construction of fuzzy least squares estimators in fuzzy linear regression models , 2011, Expert Syst. Appl..
[45] Kamile Sanli Kula,et al. Fuzzy Robust Regression Analysis Based on the Ranking of Fuzzy Sets , 2008, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[46] Bang-Yong Sohn. ROBUST FUZZY LINEAR REGRESSION BASED ON M-ESTIMATORS , 2005 .
[47] Jin Hee Yoon,et al. Fuzzy linear regression using rank transform method , 2015, Fuzzy Sets Syst..
[48] Michio Sugeno,et al. An introductory survey of fuzzy control , 1985, Inf. Sci..
[49] Ping-Teng Chang,et al. A generalized fuzzy weighted least-squares regression , 1996, Fuzzy Sets Syst..
[50] Hsien-Chung Wu,et al. Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data , 2003, Comput. Stat. Data Anal..
[51] Juan Martínez-Moreno,et al. Estimation of a Fuzzy Regression Model Using Fuzzy Distances , 2016, IEEE Transactions on Fuzzy Systems.
[52] Wenyi Zeng,et al. A new fuzzy regression model based on least absolute deviation , 2016, Eng. Appl. Artif. Intell..
[53] E. Lee,et al. Nonparametric fuzzy regression—k-NN and kernel smoothing techniques , 1999 .
[54] Pierpaolo D'Urso,et al. Least squares estimation of a linear regression model with LR fuzzy response , 2006, Comput. Stat. Data Anal..
[55] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[56] Chachi Jalal,et al. TWO ROBUST FUZZY REGRESSION MODELS AND THEIR APPLICATIONS IN PREDICTING IMPERFECTIONS OF COTTON YARN , 2016 .
[57] Usman T. Khan,et al. A new fuzzy linear regression approach for dissolved oxygen prediction , 2015 .
[58] Fikri Akdeniz,et al. Restricted Ridge Estimators of the Parameters in Semiparametric Regression Model , 2009 .
[59] Jung-Hsien Chiang,et al. Fuzzy Regression Analysis by Support Vector Learning Approach , 2008, IEEE Transactions on Fuzzy Systems.
[60] C. R. Bector,et al. A simple method for computation of fuzzy linear regression , 2005, Eur. J. Oper. Res..
[61] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[62] Ebrahim Nasrabadi,et al. A mathematical-programming approach to fuzzy linear regression analysis , 2004, Appl. Math. Comput..
[63] Alireza Arabpour,et al. ESTIMATING THE PARAMETERS OF A FUZZY LINEAR REGRESSION MODEL , 2008 .
[64] Junzo Watada,et al. Possibilistic linear regression analysis for fuzzy data , 1989 .
[65] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[66] Lutgarde M. C. Buydens,et al. Interpretation of variable importance in Partial Least Squares with Significance Multivariate Correlation (sMC) , 2014 .
[67] Denis Bosq,et al. Nonparametric statistics for stochastic processes , 1996 .