Elastic Net Oriented to Fuzzy Semiparametric Regression Model With Fuzzy Explanatory Variables and Fuzzy Responses

In the multivariate linear regression model, it is desirable to include the important explanatory variables to achieve maximal prediction. In this context, the present paper is an attempt to extend the conventional elastic net multiple linear regression model adopted with a semiparametric method to fuzzy predictors and responses. For this purpose, kernel smoothing and elastic net penalized methods were combined to construct a novel variable-selection method in a fuzzy multiple regression model. Some common goodness-of-fit criteria were also included to examine the performance of the proposed method. The effectiveness of the proposed method was illustrated through three numerical examples including a simulation study and two practical cases. The proposed method was also compared with several common fuzzy multiple regression models. The numerical results clearly indicated that the proposed method is capable of providing sufficiently accurate results in cases where noninformative explanatory variables are removed from the model.

[1]  James J. Buckley,et al.  Fuzzy regression using least absolute deviation estimators , 2007, Soft Comput..

[2]  Thierry Denoeux,et al.  Nonparametric regression analysis of uncertain and imprecise data using belief functions , 2004, Int. J. Approx. Reason..

[3]  Pierpaolo D'Urso,et al.  Linear regression analysis for fuzzy = crisp input and fuzzy = crisp output data , 2015 .

[4]  Antonio-Francisco Roldán-López-de-Hierro,et al.  A fuzzy regression model based on finite fuzzy numbers and its application to real-world financial data , 2017, J. Comput. Appl. Math..

[5]  Difference Based Ridge and Liu Type Estimators in Semiparametric Regression Models , 2011 .

[6]  S. M. Taheri,et al.  FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS , 2012 .

[7]  Chachi Jalal,et al.  Multiple Fuzzy Regression Model for Fuzzy Input-Output Data , 2016 .

[8]  M. Puri,et al.  Differentials of fuzzy functions , 1983 .

[9]  Seung-Hoe Choi,et al.  LEAST ABSOLUTE DEVIATION ESTIMATOR IN FUZZY REGRESSION , .

[10]  Mohammad Ghasem Akbari,et al.  Linear Model With Exact Inputs and Interval-Valued Fuzzy Outputs , 2018, IEEE Transactions on Fuzzy Systems.

[11]  R. Leardi,et al.  Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data , 2002 .

[12]  Ning Wang,et al.  Fuzzy nonparametric regression based on local linear smoothing technique , 2007, Inf. Sci..

[13]  Chiang Kao,et al.  Least-squares estimates in fuzzy regression analysis , 2003, Eur. J. Oper. Res..

[14]  Sabyasachi Ghoshray,et al.  A linear regression model using triangular fuzzy number coefficients , 1999, Fuzzy Sets Syst..

[15]  K. Takezawa,et al.  Introduction to Nonparametric Regression , 2005 .

[16]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[17]  Jin Hee Yoon,et al.  The statistical inferences of fuzzy regression based on bootstrap techniques , 2015, Soft Comput..

[18]  Mohammad Ghasem Akbari,et al.  Fuzzy semi-parametric partially linear model with fuzzy inputs and fuzzy outputs , 2017, Expert Syst. Appl..

[19]  Ebrahim Nasrabadi,et al.  Fuzzy linear regression analysis: a multi-objective programming approach , 2005, Appl. Math. Comput..

[20]  D. Massart,et al.  Elimination of uninformative variables for multivariate calibration. , 1996, Analytical chemistry.

[21]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[22]  Hsien-Chung Wu Linear regression analysis for fuzzy input and output data using the extension principle , 2003 .

[23]  S. M. Taheri,et al.  Fuzzy least-absolutes regression using shape preserving operations , 2012, Inf. Sci..

[24]  Gemai Chen,et al.  Semiparametric generalized least squares estimation in partially linear regression models with correlated errors , 2007 .

[25]  K. S. Kula,et al.  A Study on Fuzzy Robust Regression and Its Application to Insurance , 2012 .

[26]  Wenyi Zeng,et al.  Fuzzy least absolute linear regression , 2017, Appl. Soft Comput..

[27]  P. Diamond,et al.  Extended fuzzy linear models and least squares estimates , 1997 .

[28]  Andrzej Bargiela,et al.  Multiple regression with fuzzy data , 2007, Fuzzy Sets Syst..

[29]  I. E. Frank Intermediate least squares regression method , 1987 .

[30]  Jeffrey D. Hart,et al.  Trigonometric series regression estimators with an application to partially linear models , 1990 .

[31]  Morteza Amini,et al.  Optimal partial ridge estimation in restricted semiparametric regression models , 2015, J. Multivar. Anal..

[32]  Robert Gould,et al.  A Modern Approach to Regression with R , 2010 .

[33]  Pierpaolo D'Urso,et al.  A least-squares approach to fuzzy linear regression analysis , 2000 .

[34]  J. Roger,et al.  CovSel: Variable selection for highly multivariate and multi-response calibration: Application to IR spectroscopy , 2011 .

[35]  Lana E. Melkumova,et al.  Comparing Ridge and LASSO estimators for data analysis , 2017 .

[36]  Jalal Chachi,et al.  A fuzzy robust regression approach applied to bedload transport data , 2017, Commun. Stat. Simul. Comput..

[37]  Ruili Wang,et al.  An enhanced fuzzy linear regression model with more flexible spreads , 2009, Fuzzy Sets Syst..

[38]  Jin Hee Yoon,et al.  General fuzzy regression using least squares method , 2010, Int. J. Syst. Sci..

[39]  Igor I Baskin,et al.  The One‐Class Classification Approach to Data Description and to Models Applicability Domain , 2010, Molecular informatics.

[40]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[41]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[42]  Mohammad Arashi,et al.  Feasible ridge estimator in partially linear models , 2013, J. Multivar. Anal..

[43]  Pierpaolo D'Urso,et al.  Robust fuzzy regression analysis , 2011, Inf. Sci..

[44]  Hsien-Chung Wu,et al.  The construction of fuzzy least squares estimators in fuzzy linear regression models , 2011, Expert Syst. Appl..

[45]  Kamile Sanli Kula,et al.  Fuzzy Robust Regression Analysis Based on the Ranking of Fuzzy Sets , 2008, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[46]  Bang-Yong Sohn ROBUST FUZZY LINEAR REGRESSION BASED ON M-ESTIMATORS , 2005 .

[47]  Jin Hee Yoon,et al.  Fuzzy linear regression using rank transform method , 2015, Fuzzy Sets Syst..

[48]  Michio Sugeno,et al.  An introductory survey of fuzzy control , 1985, Inf. Sci..

[49]  Ping-Teng Chang,et al.  A generalized fuzzy weighted least-squares regression , 1996, Fuzzy Sets Syst..

[50]  Hsien-Chung Wu,et al.  Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data , 2003, Comput. Stat. Data Anal..

[51]  Juan Martínez-Moreno,et al.  Estimation of a Fuzzy Regression Model Using Fuzzy Distances , 2016, IEEE Transactions on Fuzzy Systems.

[52]  Wenyi Zeng,et al.  A new fuzzy regression model based on least absolute deviation , 2016, Eng. Appl. Artif. Intell..

[53]  E. Lee,et al.  Nonparametric fuzzy regression—k-NN and kernel smoothing techniques , 1999 .

[54]  Pierpaolo D'Urso,et al.  Least squares estimation of a linear regression model with LR fuzzy response , 2006, Comput. Stat. Data Anal..

[55]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[56]  Chachi Jalal,et al.  TWO ROBUST FUZZY REGRESSION MODELS AND THEIR APPLICATIONS IN PREDICTING IMPERFECTIONS OF COTTON YARN , 2016 .

[57]  Usman T. Khan,et al.  A new fuzzy linear regression approach for dissolved oxygen prediction , 2015 .

[58]  Fikri Akdeniz,et al.  Restricted Ridge Estimators of the Parameters in Semiparametric Regression Model , 2009 .

[59]  Jung-Hsien Chiang,et al.  Fuzzy Regression Analysis by Support Vector Learning Approach , 2008, IEEE Transactions on Fuzzy Systems.

[60]  C. R. Bector,et al.  A simple method for computation of fuzzy linear regression , 2005, Eur. J. Oper. Res..

[61]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[62]  Ebrahim Nasrabadi,et al.  A mathematical-programming approach to fuzzy linear regression analysis , 2004, Appl. Math. Comput..

[63]  Alireza Arabpour,et al.  ESTIMATING THE PARAMETERS OF A FUZZY LINEAR REGRESSION MODEL , 2008 .

[64]  Junzo Watada,et al.  Possibilistic linear regression analysis for fuzzy data , 1989 .

[65]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[66]  Lutgarde M. C. Buydens,et al.  Interpretation of variable importance in Partial Least Squares with Significance Multivariate Correlation (sMC) , 2014 .

[67]  Denis Bosq,et al.  Nonparametric statistics for stochastic processes , 1996 .