Strategies for increasing the throughput of super-resolution microscopies.

[1]  S. Manley,et al.  Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging , 2019, Nature Communications.

[2]  P. Schwille,et al.  Flat-top TIRF illumination boosts DNA-PAINT imaging and quantification , 2019, Nature Communications.

[3]  Marco Castello,et al.  Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo , 2019, Nature Communications.

[4]  Gerald M. Rubin,et al.  Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution , 2019, Science.

[5]  Alberto Diaspro,et al.  A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM , 2019, Nature Methods.

[6]  A. Ozcan,et al.  Deep learning enables cross-modality super-resolution in fluorescence microscopy , 2018, Nature Methods.

[7]  E. Boyden,et al.  Imaging cellular ultrastructures using expansion microscopy (U-ExM) , 2018, Nature Methods.

[8]  Marcel Štefko,et al.  Autonomous illumination control for localization microscopy. , 2018, Optics express.

[9]  Yujie Sun,et al.  Expansion enhanced nanoscopy. , 2018, Nanoscale.

[10]  François Nédélec,et al.  Systematic Nanoscale Analysis of Endocytosis Links Efficient Vesicle Formation to Patterned Actin Nucleation , 2018, Cell.

[11]  Frederik Görlitz,et al.  easySLM‐STED: Stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning , 2018, Journal of biophotonics.

[12]  Susan Cox,et al.  Artefact-free high density localization microscopy analysis , 2018 .

[13]  S. Rizzoli,et al.  X10 expansion microscopy enables 25‐nm resolution on conventional microscopes , 2018, EMBO reports.

[14]  J. Bewersdorf,et al.  Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images. , 2018, Annual review of biochemistry.

[15]  H. Ewers,et al.  Expansion stimulated emission depletion microscopy (ExSTED) , 2018, bioRxiv.

[16]  Christophe Zimmer,et al.  Deep learning massively accelerates super-resolution localization microscopy , 2018, Nature Biotechnology.

[17]  Kyle M. Douglass,et al.  Super-resolution microscopy to decipher multi-molecular assemblies. , 2018, Current opinion in structural biology.

[18]  Hiroshi Sekiya,et al.  A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing , 2018, Nature Neuroscience.

[19]  Kyle M. Douglass,et al.  Multicolor single particle reconstruction of protein complexes , 2018, Nature Methods.

[20]  G. Coceano,et al.  Enhanced photon collection enables four dimensional fluorescence nanoscopy of living systems , 2018, Nature Communications.

[21]  Aaron R. Halpern,et al.  Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization. , 2017, ACS nano.

[22]  James A. Gagnon,et al.  Expansion microscopy of zebrafish for neuroscience and developmental biology studies , 2017, Proceedings of the National Academy of Sciences.

[23]  Daniel Choquet,et al.  Localization-based super-resolution imaging meets high-content screening , 2017, Nature Methods.

[24]  Suliana Manley,et al.  TORC1 Organised in Inhibited Domains (TOROIDs) regulate TORC1 activity , 2017, Nature.

[25]  Stefan W. Hell,et al.  Adaptive-illumination STED nanoscopy , 2017, Proceedings of the National Academy of Sciences.

[26]  Brian D. Slaughter,et al.  Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex , 2017, Proceedings of the National Academy of Sciences.

[27]  Andrew H. Beck,et al.  Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy , 2017, Nature Biotechnology.

[28]  Zhen-Li Huang,et al.  High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view. , 2017, Optics express.

[29]  T. Huser,et al.  Chip-based wide field-of-view nanoscopy , 2017, Nature Photonics.

[30]  Edward S. Boyden,et al.  Iterative expansion microscopy , 2017, Nature Methods.

[31]  Stefan W. Hell,et al.  Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent , 2017, Proceedings of the National Academy of Sciences.

[32]  Patrick Fox-Roberts,et al.  Local dimensionality determines imaging speed in localization microscopy , 2017, Nature Communications.

[33]  Marcel Leutenegger,et al.  Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy , 2016, Scientific Reports.

[34]  Kyle M. Douglass,et al.  Super-resolution imaging of multiple cells by optimised flat-field epi-illumination , 2016, Nature Photonics.

[35]  Ricardo Henriques,et al.  Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations , 2016, Nature Communications.

[36]  Kwanghun Chung,et al.  Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues , 2016, Nature Biotechnology.

[37]  Edward S Boyden,et al.  Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies , 2016, Nature Biotechnology.

[38]  Edward S Boyden,et al.  Nanoscale Imaging of RNA with Expansion Microscopy , 2016, Nature Methods.

[39]  H. Cang,et al.  Ex-STORM: Expansion Single Molecule Super-resolution Microscopy , 2016, bioRxiv.

[40]  H. Cang,et al.  ExM-STORM: Expansion Single Molecule Nanoscopy , 2016 .

[41]  Joshua C Vaughan,et al.  Expansion microscopy with conventional antibodies and fluorescent proteins , 2016, Nature Methods.

[42]  Edward S. Allgeyer,et al.  Two-colour live-cell nanoscale imaging of intracellular targets , 2016, Nature Communications.

[43]  D. Sage,et al.  Super-resolution fight club , 2016, Nature Photonics.

[44]  Stephan J Sigrist,et al.  Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics , 2015, Nature Methods.

[45]  Edward S. Boyden,et al.  Expansion microscopy , 2015, Science.

[46]  Steffen J Sahl,et al.  2000-fold parallelized dual-color STED fluorescence nanoscopy. , 2015, Optics express.

[47]  Guy M. Hagen,et al.  ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging , 2014, Bioinform..

[48]  S. Manley,et al.  High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization , 2014, Proceedings of the National Academy of Sciences.

[49]  Mark A A Neil,et al.  3‐D stimulated emission depletion microscopy with programmable aberration correction , 2014, Journal of biophotonics.

[50]  Christoph Pieper,et al.  Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy , 2013, Proceedings of the National Academy of Sciences.

[51]  Sjoerd Stallinga,et al.  Re-scan confocal microscopy: scanning twice for better resolution. , 2013, Biomedical optics express.

[52]  Andrew G. York,et al.  Instant super-resolution imaging in live cells and embryos via analog image processing , 2013, Nature Methods.

[53]  Brahim Lounis,et al.  Large parallelization of STED nanoscopy using optical lattices. , 2013, Optics express.

[54]  Christian Eggeling,et al.  Nanoscopy with more than 100,000 'doughnuts' , 2013, Nature Methods.

[55]  Martin J Booth,et al.  Auto-aligning stimulated emission depletion microscope using adaptive optics. , 2013, Optics letters.

[56]  Michael W. Davidson,et al.  Video-rate nanoscopy enabled by sCMOS camera-specific single-molecule localization algorithms , 2013, Nature Methods.

[57]  J. Sibarita,et al.  Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy , 2013, PloS one.

[58]  Christian Eggeling,et al.  rsEGFP2 enables fast RESOLFT nanoscopy of living cells , 2012, eLife.

[59]  C. Bustamante,et al.  Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM) , 2012, Proceedings of the National Academy of Sciences.

[60]  Johann Engelhardt,et al.  Parallelized STED fluorescence nanoscopy. , 2011, Optics express.

[61]  Johann Engelhardt,et al.  Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. , 2010, Optics express.

[62]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[63]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[64]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[65]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[66]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[67]  S. Hell,et al.  Imaging and writing at the nanoscale with focused visible light through saturable optical transitions , 2003 .

[68]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[69]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.