Efficient digital implementation of a conductance-based globus pallidus neuron and the dynamics analysis

[1]  M. Carpenter,et al.  Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. , 1967, The American journal of anatomy.

[2]  M. Delong,et al.  Activity of pallidal neurons during movement. , 1971, Journal of neurophysiology.

[3]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[4]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[5]  H. Kita,et al.  Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation , 1991, Brain Research.

[6]  R. Llinás,et al.  Electrophysiology of globus pallidus neurons in vitro. , 1994, Journal of neurophysiology.

[7]  T. Sejnowski,et al.  A Computational Model of How the Basal Ganglia Produce Sequences , 1998, Journal of Cognitive Neuroscience.

[8]  M. Dragunow,et al.  The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington's disease , 2000, Neuroscience.

[9]  J. Obeso,et al.  Pathophysiology of the basal ganglia in Parkinson's disease , 2000, Trends in Neurosciences.

[10]  I. Stanford,et al.  Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro , 2000, The Journal of physiology.

[11]  Peter Redgrave,et al.  A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour , 2001, Biological Cybernetics.

[12]  Charles J. Wilson,et al.  Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia , 2002, The Journal of Neuroscience.

[13]  Jonathan E. Rubin,et al.  High Frequency Stimulation of the Subthalamic Nucleus Eliminates Pathological Thalamic Rhythmicity in a Computational Model , 2004, Journal of Computational Neuroscience.

[14]  L. Tremblay,et al.  Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. , 2004, Brain : a journal of neurology.

[15]  H. Yin,et al.  The role of the basal ganglia in habit formation , 2006, Nature Reviews Neuroscience.

[16]  R. Yulmetyev,et al.  Regular and stochastic behavior of Parkinsonian pathological tremor signals , 2006, physics/0603030.

[17]  Giacomo Indiveri,et al.  A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity , 2006, IEEE Transactions on Neural Networks.

[18]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[19]  T. Klingberg,et al.  Prefrontal cortex and basal ganglia control access to working memory , 2008, Nature Neuroscience.

[20]  J. Obeso,et al.  Functional organization of the basal ganglia: Therapeutic implications for Parkinson's disease , 2008, Movement disorders : official journal of the Movement Disorder Society.

[21]  S. Lewis,et al.  A pathophysiological model of freezing of gait in Parkinson's disease. , 2009, Parkinsonism & related disorders.

[22]  Indranil Saha,et al.  journal homepage: www.elsevier.com/locate/neucom , 2022 .

[23]  H. Bergman,et al.  Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease , 2010, Nature Reviews Neuroscience.

[24]  Cengiz Günay,et al.  Dendritic Sodium Channels Regulate Network Integration in Globus Pallidus Neurons: A Modeling Study , 2010, The Journal of Neuroscience.

[25]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[26]  H. Kita,et al.  Functional connectivity and integrative properties of globus pallidus neurons , 2011, Neuroscience.

[27]  Bernard Girau,et al.  The role of the asymptotic dynamics in the design of FPGA-based hardware implementations of gIF-type neural networks , 2011, Journal of Physiology-Paris.

[28]  L. Menegaldo,et al.  On the use of information theory for detecting upper limb motor dysfunction: An application to Parkinson’s disease , 2011 .

[29]  Chi-Sang Poon,et al.  Neuromorphic Silicon Neurons and Large-Scale Neural Networks: Challenges and Opportunities , 2011, Front. Neurosci..

[30]  Timothy K. Horiuchi,et al.  A Neuromorphic VLSI Head Direction Cell System , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Andrew Adamatzky,et al.  Emergent spiking in non-ideal memristor networks , 2012, Microelectron. J..

[32]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[33]  Chiara Bartolozzi,et al.  Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems , 2014, Proceedings of the IEEE.

[34]  Giacomo Indiveri,et al.  A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses , 2015, Front. Neurosci..

[35]  Rafal Bogacz,et al.  Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson’s Disease , 2015, PLoS Comput. Biol..

[36]  Bin Deng,et al.  Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis , 2015, Neural Networks.

[37]  C Daniel Meliza,et al.  Silicon central pattern generators for cardiac diseases , 2015, The Journal of physiology.

[38]  Charles J. Wilson Oscillators and Oscillations in the Basal Ganglia , 2015, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[39]  Takashi Kohno,et al.  Simple Cortical and Thalamic Neuron Models for Digital Arithmetic Circuit Implementation , 2016, Front. Neurosci..

[40]  Jiang Wang,et al.  Digital implementations of thalamocortical neuron models and its application in thalamocortical control using FPGA for Parkinson's disease , 2016, Neurocomputing.

[41]  Arash Ahmadi,et al.  Transient response characteristic of memristor circuits and biological-like current spikes , 2016, Neural Computing and Applications.

[42]  M. Vergassola,et al.  Theory of feedback controlled brain stimulations for Parkinson’s disease , 2016 .

[43]  William D. Marslen-Wilson,et al.  Representation of Instantaneous and Short-Term Loudness in the Human Cortex , 2016, Front. Neurosci..

[44]  Bin Deng,et al.  Efficient implementation of a real-time estimation system for thalamocortical hidden Parkinsonian properties , 2017, Scientific Reports.