Perturbation perspective of partial coherence discussion on imperfect x-ray optical elements

The rapid development of new-generation synchrotron facilities with excellent coherence demands more accurate evaluation of beamline performance. A perturbation theory based on wave optics is proposed in this work to describe the effect of imperfections on the performance of x-ray optical elements. It shows that the perturbed performance of the non-ideal optical element could be derived from the perfect performance of the ideal optic through a convolution operation. The semi-analytical approach proposed here provides a new way to improve the simulation efficiency for imperfect optical elements. The finite aperture effect on diffraction-limited optics and focal shape distortion by surface height error are treated to show the application of the proposed method.

[1]  Luca Rebuffi,et al.  OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual experiments , 2017, Optical Engineering + Applications.

[2]  K. V. Klementiev,et al.  Powerful scriptable ray tracing package xrt , 2014, Optics & Photonics - Optical Engineering + Applications.

[3]  A. Singer,et al.  Coherence properties of hard x-ray synchrotron sources and x-ray free-electron lasers , 2009, 0907.4009.

[4]  D. Chenevier,et al.  ESRF: Inside the Extremely Brilliant Source Upgrade , 2018 .

[5]  Xianbo Shi,et al.  A hybrid method for X-ray optics simulation: combining geometric ray-tracing and wavefront propagation , 2014, Journal of synchrotron radiation.

[6]  Xianbo Shi,et al.  X-ray optics simulation and beamline design for the APS upgrade , 2017, Optical Engineering + Applications.

[7]  S. Leemann,et al.  First optics and beam dynamics studies on the MAX IV 3 GeV storage ring , 2017 .

[8]  Hanfei Yan,et al.  Application of partially coherent wavefront propagation calculations for design of coherence-preserving synchrotron radiation beamlines , 2011 .

[9]  Gang Xu,et al.  The HEPS project , 2018, Journal of Synchrotron Radiation.

[10]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[11]  M. Glass,et al.  Coherent modes of X-ray beams emitted by undulators in new storage rings , 2017, 1706.04393.

[12]  Johannes Bahrdt Wavefront tracking within the stationary phase approximation , 2007 .

[13]  J. Goodman Introduction to Fourier optics , 1969 .

[14]  P. Cloetens,et al.  A hierarchical approach for modeling X-ray beamlines: application to a coherent beamline. , 2019, Journal of synchrotron radiation.

[15]  Christian G. Schroer,et al.  Hard X-ray nanofocusing at low-emittance synchrotron radiation sources , 2014, Journal of synchrotron radiation.