Decentralized control and periodic feedback

The decentralized stabilization problem for linear, discrete-time, periodically time-varying plants using periodic controllers is considered. The main tool used is the technique of lifting a periodic system to a time-invariant one via extensions of the input and output spaces. It is shown that a periodically time-varying system of fundamental period N can be stabilized by a decentralized periodic controller if and only if: 1) the system is stabilizable and detectable, and 2) the N-lifting of each complementary subsystem of identically zero input-output map is free of unstable input-output decoupling zeros. In the special case of N=1, this yields and clarifies all the major existing results on decentralized stabilization of time-invariant plants by periodically time-varying controllers. >

[1]  F. J. Mullin,et al.  The analysis of sampled-data control systems with a periodically time-varying sampling rate , 1959, IRE Transactions on Automatic Control.

[2]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[3]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[4]  Jon H. Davis Stability Conditions Derived from Spectral Theory: Discrete Systems with Periodic Feedback , 1972 .

[5]  E. Davison,et al.  On the stabilization of decentralized control systems , 1973 .

[6]  G. Hewer Periodicity, Detectability and the Matrix Riccati Equation , 1975 .

[7]  C. Sidney Burrus,et al.  A unified analysis of multirate and periodically time-varying digital filters , 1975 .

[8]  A. Stephen Morse,et al.  Decentralized control of linear multivariable systems , 1976, Autom..

[9]  S. Bhattacharyya,et al.  On blocking zeros , 1977 .

[10]  H. Kano,et al.  Periodic solutions of matrix Riccati equations with detectability and stabilizability , 1979 .

[11]  B. O. Anderson,et al.  Time-varying feedback laws for decentralized control , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[12]  Brian D. O. Anderson,et al.  Algebraic characterization of fixed modes in decentralized control , 1981, Autom..

[13]  Shih-Ho Wang,et al.  Stabilization of decentralized control systems via time-varying controllers , 1982 .

[14]  M. Vidyasagar,et al.  Algebraic characterization of decentralized fixed modes and pole assignment , 1982, 1982 21st IEEE Conference on Decision and Control.

[15]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[16]  Louise Trave,et al.  An application of vibrational control to cancel unstable decentralized fixed modes , 1985 .

[17]  T. Runolfsson,et al.  Linear periodic feedback: Zeros placement capabilities , 1986, 1986 25th IEEE Conference on Decision and Control.

[18]  P. Khargonekar,et al.  Stabilizability of linear time-varying and uncertain linear systems , 1988 .

[19]  Jacques L. Willems Time-varying feedback for the stabilization of fixed modes in decentralized control systems , 1989, Autom..

[20]  P. Kabamba,et al.  Simultaneous pole assignment in linear periodic systems by constrained structure feedback , 1989 .

[21]  A. Ozguler Decentralized control: a stable proper fractional approach , 1990 .

[22]  E. Davison,et al.  Decentralized stabilization and pole assignment for general proper systems , 1990 .

[23]  A. B. Özgüler,et al.  Decentralized stabilization: characterization of all solutions and genericity aspects , 1992 .

[24]  A. Bülent Özgüler,et al.  Decentralized simultaneous stabilization and reliable control using periodic feedback , 1992 .