A Simple Linear Time Algorithm for Computing Sparse Spanners in Weighted Graphs
暂无分享,去创建一个
[1] M. Simonovits,et al. Cycles of even length in graphs , 1974 .
[2] Béla Bollobás,et al. Extremal problems in graph theory , 1977, J. Graph Theory.
[3] Baruch Awerbuch,et al. Complexity of network synchronization , 1985, JACM.
[4] A. Dress,et al. Reconstructing the shape of a tree from observed dissimilarity data , 1986 .
[5] David Peleg,et al. An optimal synchronizer for the hypercube , 1987, PODC '87.
[6] Eli Upfal,et al. A trade-off between space and efficiency for routing tables , 1989, JACM.
[7] David Peleg,et al. An Optimal Synchronizer for the Hypercube , 1989, SIAM J. Comput..
[8] Torben Hagerup,et al. Fast and reliable parallel hashing , 1991, SPAA '91.
[9] Jeffrey S. Salowe. Construction of multidimensional spanner graphs, with applications to minimum spanning trees , 1991, SCG '91.
[10] Jose Augusto Ramos Soares,et al. Graph Spanners: a Survey , 1992 .
[11] Giri Narasimhan,et al. Fast algorithms for constructing t-spanners and paths with stretch t , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[12] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[13] Christopher M. Hartman. Extremal problems in graph theory , 1997 .
[14] Mikkel Thorup,et al. Approximate distance oracles , 2001, JACM.
[15] Noga Alon,et al. The Moore Bound for Irregular Graphs , 2002, Graphs Comb..