The influences of glass–glass interfaces and Ni additions on magnetic properties of transition-metal phosphide nano-glasses

In this work, a novel kind of non-crystalline materials, the metallic nano-glasses (NGs), is synthesized, and the influences of glass–glass interfaces (GGIs) and Ni additions on the structural and thermodynamics properties, as well as the magnetism of (Co, Fe, Ni)–P NGs with various sizes of glassy grains (Davg) are studied systematically. The addition of Ni and the reduction of Davg are found to improve the glass forming abilities of NGs. The influences of volume fractions of GGIs on the magnetism of NGs are analyzed by Mössbauer spectroscopy and magnetization hysteresis measurements. It is found that the soft magnetic properties of (Co, Fe)–P NGs with reduced Davg can be dramatically improved, as compared with micro-structured samples. Thus, this work has an in-depth understanding of the structural properties and magnetism of NGs as affected by the glass–glass interfaces in magnetic NGs.

[1]  G. Zheng,et al.  Characterization on the glass forming ability of metallic nano-glasses by the dynamic scaling for mechanical loss in supercooled liquid state , 2021 .

[2]  R. Mikut,et al.  Unveiling local atomic bonding and packing of amorphous nanophases via independent component analysis facilitated pair distribution function , 2021, Acta Materialia.

[3]  K. Edalati,et al.  Cathodic corrosion activated Fe-based nanoglass as a highly active and stable oxygen evolution catalyst for water splitting , 2021, Journal of Materials Chemistry A.

[4]  G. Zheng,et al.  Atomistic Simulation on the Mechanical Properties of Diffusion Bonded Zr-Cu Metallic Glasses with Oxidized Interfaces , 2021, Metallurgical and Materials Transactions A.

[5]  H. Hahn,et al.  On the differences in shear band characteristics between a binary Pd-Si metallic and nanoglass , 2021 .

[6]  Wei Zhang,et al.  Soft magnetic Co-based Co–Fe–B–Si–P bulk metallic glasses with high saturation magnetic flux density of over 1.2 T , 2020 .

[7]  Y. Ivanisenko,et al.  Influence of topological structure and chemical segregation on the thermal and mechanical properties of Pd–Si nanoglasses , 2020 .

[8]  R. Witte,et al.  Magnetic Tb75Fe25 Nanoglass for Cryogenic Permanent Magnet Undulator , 2020 .

[9]  H. Hahn,et al.  Ni60Nb40 Nanoglass for Tunable Magnetism and Methanol Oxidation , 2020, ACS Applied Nano Materials.

[10]  S. Ullah,et al.  Giant magnetocaloric effect in nanostructured Fe-Co-P amorphous alloys enabled through pulse electrodeposition , 2020, Nanotechnology.

[11]  Y. Ivanisenko,et al.  Deformation-induced atomic rearrangements and crystallization in the shear bands of a Tb75Fe25 nanoglass , 2020 .

[12]  K. Yao,et al.  Tailoring soft magnetic properties of Fe-based amorphous alloys through C addition , 2020 .

[13]  X. Mu,et al.  Magnetic properties of iron clusters in Sc75Fe25 nanoglass , 2020 .

[14]  Weihua Wang,et al.  The Structural and Dynamic Heterogeneities of Ni-P Nanoglass Characterized by Stress-Relaxation , 2020, Journal of Alloys and Compounds.

[15]  Yang Ren,et al.  Engineering medium-range order and polyamorphism in a nanostructured amorphous alloy , 2019, Communications Physics.

[16]  Fei Chen,et al.  Nanoindentation creep behavior of electrodeposited Ni-P nanoglass films , 2019, Intermetallics.

[17]  Y. Ivanisenko,et al.  Tuning the Curie temperature of Fe90Sc10 nanoglasses by varying the volume fraction and the composition of the interfaces , 2019, Scripta Materialia.

[18]  B. Sun,et al.  Micromechanical mechanism of yielding in dual nano-phase metallic glass , 2018, Scripta Materialia.

[19]  H. Gleiter,et al.  Thermal stability of the Ti-Zr-Cu-Pd nano-glassy thin films , 2018 .

[20]  B. Zhang,et al.  Synthesis and nanoindentation behaviors of binary CuTi nanoglass films , 2017 .

[21]  H. Gleiter,et al.  Ni-P nanoglass prepared by multi-phase pulsed electrodeposition , 2017 .

[22]  H. Gleiter,et al.  Investigation of the deposition conditions on the microstructure of TiZrCuPd nano-glass thin films , 2017 .

[23]  Y. Ivanisenko,et al.  Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties , 2017 .

[24]  Yunzhuo Lu,et al.  Mössbauer study of the ultrahigh glass-forming ability in FeCoCrMoCBY alloy system , 2017 .

[25]  N. Chen,et al.  A new class of non-crystalline materials: Nanogranular metallic glasses , 2017 .

[26]  Andrea Cavagnino,et al.  Soft Magnetic Material Status and Trends in Electric Machines , 2017, IEEE Transactions on Industrial Electronics.

[27]  H. Gleiter,et al.  Progress of nanostructured metallic glasses , 2017 .

[28]  Y. Ivanisenko,et al.  Surface segregation of primary glassy nanoparticles of Fe90Sc10 nanoglass , 2016 .

[29]  H. Gleiter,et al.  Sample size effects on strength and deformation mechanism of Sc 75 Fe 25 nanoglass and metallic glass , 2016 .

[30]  H. Gleiter Nanoglasses: A New Kind of Noncrystalline Material and the Way to an Age of New Technologies? , 2016, Small.

[31]  C. Kübel,et al.  Nanoscale morphology of Ni50Ti45Cu5 nanoglass , 2016 .

[32]  D. V. Louzguine-Luzgin,et al.  A nanoglass alloying immiscible Fe and Cu at the nanoscale. , 2015, Nanoscale.

[33]  H. Gleiter,et al.  Plasticity of a scandium-based nanoglass , 2015 .

[34]  Hongkai Wu,et al.  Nanostructured Zr-Pd Metallic Glass Thin Film for Biochemical Applications , 2015, Scientific Reports.

[35]  N. Chen,et al.  The ultrastable kinetic behavior of an Au-based nanoglass , 2014 .

[36]  H. Gleiter,et al.  Influence of interface on structure and magnetic properties of Fe50B50 nanoglass , 2014 .

[37]  H. Gleiter,et al.  Thermal and plastic behavior of nanoglasses , 2014 .

[38]  H. Gleiter,et al.  Nanostructured solids – From nano-glasses to quantum transistors , 2014 .

[39]  H. Gleiter Nanoglasses: a new kind of noncrystalline materials , 2013, Beilstein journal of nanotechnology.

[40]  R. Brand,et al.  Evidence for enhanced ferromagnetism in an iron-based nanoglass , 2013 .

[41]  Jiangong Li,et al.  High density of shear bands and enhanced free volume induced in Zr70Cu20Ni10 metallic glass by high-energy ball milling , 2013 .

[42]  H. Gleiter,et al.  Evidence of itinerant magnetism in a metallic nanoglass , 2012 .

[43]  H. Gleiter,et al.  Atomic structure and structural stability of Sc75Fe25 nanoglasses. , 2012, Nano letters.

[44]  G. Zheng,et al.  Mechanical Properties and Crystallization Behaviors of Microstructured Co-Fe-P Amorphous Alloys , 2011 .

[45]  X. D. Wang,et al.  Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses , 2011 .

[46]  Ji Zhou,et al.  The physic properties of Bi–Zn codoped Y-type hexagonal ferrite , 2008 .

[47]  Q. Jiang,et al.  Glass transition of low-dimensional polystyrene , 2004 .

[48]  D. Morineau,et al.  Finite-size and surface effects on the glass transition of liquid toluene confined in cylindrical mesopores , 2002 .

[49]  Q. Jiang,et al.  Finite size effect on glass transition temperatures , 1999 .

[50]  Joseph L. Keddie,et al.  Size-Dependent Depression of the Glass Transition Temperature in Polymer Films , 1994 .