Al2O3/silicon nanoISFET with near ideal nernstian response.

Nanoscale ISFET (ion sensitive field-effect transistor) pH sensors are presented that produce the well-known sub-nernstian pH-response for silicon dioxide (SiO(2)) surfaces and near ideal nernstian sensitivity for alumina (Al(2)O(3)) surfaces. Titration experiments of SiO(2) surfaces resulted in a varying pH sensitivity ∼20 mV/pH for pH near 2 and >45 mV/pH for pH > 5. Measured pH responses from titrations of thin (15 nm) atomic layer deposited (ALD) alumina (Al(2)O(3)) surfaces on the nanoISFETs resulted in near ideal nernstian pH sensitivity of 57.8 ± 1.2 mV/pH (pH range: 2-10; T = 22 °C) and temperature sensitivity of 0.19 mV/pH °C (22 °C ≤ T ≤ 40 °C). A comprehensive analytical model of the nanoISFET sensor, which is based on the combined Gouy-Chapman-Stern and Site-Binding (GCS-SB) model, accompanies the experimental results and an extracted ΔpK ≈ 1.5 from the measured responses further supports the near ideal nernstian pH sensitivity.

[1]  T. Tadros,et al.  Adsorption of potential-determining ions at the aluminium oxide-aqueous interface and the point of zero charge , 1970 .

[2]  J. Eijkel,et al.  A general model to describe the electrostatic potential at electrolyte oxide interfaces , 1996 .

[3]  Ajay Agarwal,et al.  Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. , 2009, Analytical chemistry.

[4]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[5]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[6]  Byung-Ki Sohn,et al.  Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET , 1996 .

[7]  B. E. Deal The Current Understanding of Charges in the Thermally Oxidized Silicon Structure , 1974 .

[8]  Albert van den Berg,et al.  Novel top-down wafer-scale fabrication of single crystal silicon nanowires. , 2009, Nano letters.

[9]  Werner Stumm,et al.  Specific adsorption of cations on hydrous γ-Al2O3 , 1973 .

[10]  Charles M Lieber,et al.  Flexible electrical recording from cells using nanowire transistor arrays , 2009, Proceedings of the National Academy of Sciences.

[11]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[12]  Xiaolin Zheng,et al.  Probing flow velocity with silicon nanowire sensors. , 2009, Nano letters.

[13]  Shyamsunder Erramilli,et al.  Silicon-based nanoelectronic field-effect pH sensor with local gate control , 2006 .

[14]  A. S. Grove,et al.  Effects of ionizing radiation on oxidized silicon surfaces and planar devices , 1967 .

[15]  Luc J. Bousse,et al.  The temperature dependence of the surface potential at the Al2O3/electrolyte interface , 1988 .

[16]  Thomas W. Healy,et al.  Ionizable surface group models of aqueous interfaces , 1978 .

[17]  Charles M. Lieber,et al.  Force Titrations and Ionization State Sensitive Imaging of Functional Groups in Aqueous Solutions by Chemical Force Microscopy , 1997 .

[18]  L. Bousse,et al.  The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs , 1984 .

[19]  Albert van den Berg,et al.  Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication. , 2009, ACS nano.

[20]  Jung-Chuan Chou,et al.  Study on the temperature effects of Al2O3 gate pH-ISFET , 2002 .

[21]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[22]  W. Göpel,et al.  Zeta potential measurements of Ta2O5 and SiO2 thin films , 1991 .

[23]  Hiroshi Iwasaki,et al.  Investigation of pulsed laser-deposited Al2O3 as a high pH-sensitive layer for LAPS-based biosensing applications , 2000 .

[24]  P. Bergveld,et al.  Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface , 1983, IEEE Transactions on Electron Devices.

[25]  C. A. Barlow,et al.  Theory of Double-Layer Differential Capacitance in Electrolytes , 1962 .

[26]  Eli Flaxer,et al.  Supersensitive detection of explosives by silicon nanowire arrays. , 2010, Angewandte Chemie.

[27]  A. van den Berg,et al.  All-(111) surface silicon nanowires: selective functionalization for biosensing applications. , 2010, ACS applied materials & interfaces.

[28]  Chun-Sing Lee,et al.  Silicon nanowires as chemical sensors , 2003 .

[29]  Charles M. Lieber,et al.  Semiconductor nanowires: optics and optoelectronics , 2006 .

[30]  W. Ko,et al.  A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor , 1986, IEEE Transactions on Electron Devices.

[31]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[32]  C. Schönenberger,et al.  Nernst limit in dual-gated Si-nanowire FET sensors. , 2010, Nano letters.

[33]  D. Reinhoudt,et al.  Sensitivity control of ISFETs by chemical surface modification , 1985 .

[34]  Hsin-Li Chen,et al.  Silicon Nanowires as pH Sensor , 2005 .

[35]  M. Esashi,et al.  ISFET's using inorganic gate thin films , 1979, IEEE Transactions on Electron Devices.

[36]  T. Hiemstra,et al.  Interfacial Charging Phenomena of Aluminum (Hydr)oxides , 1999 .

[37]  James R Heath,et al.  Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. , 2006, Journal of the American Chemical Society.

[38]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.