On Recursive Calculation of M- and GM-Estimates by Direct Identification in LQG Control Systems

In the previous papers (Pupeikis, 2000; Genov et al., 2006), a direct approach for estimating the parameters of a discrete-time linear time-invariant (LTI) dynamic system, acting in a closed-loop in the case of additive correlated noise with contaminating outliers uniformly spread in it, is presented. It is assumed here that the parameters of the LQG (Linear Quadratic Gaussian Control) controller are known beforehand. The aim of the given paper is development of a parametric identification approach for a closed-loop system when the parameters of an LTI system as well as that of LQG controller are not known and ought to be estimated. The recursive techniques based on an the M- and GM- estimator algorithms are applied here in the calculation of the system as well as noise filter parameters. Afterwards, the recursive parameter estimates are used in each current iteration to determine unknown parameters of the LQG-controller, too. The results of numerical simulation by computer are discussed.

[1]  G. Saridis Comparison of six on-line identification algorithms , 1974, Autom..

[2]  K. Astrom,et al.  Adaptive feedback control , 1987, Proceedings of the IEEE.

[3]  Rimantas Pupeikis Recursive robust estimation of dynamic systems parameters , 1991 .

[4]  G. Saridis Stochastic approximation methods for identification and control--A survey , 1974 .

[5]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[6]  Yakov Z. Tsypkin,et al.  Robust identification , 1980, Autom..

[7]  Tamer Basar,et al.  Analysis of Recursive Stochastic Algorithms , 2001 .

[8]  Rimantas Pupeikis Closed-loop Robust Identification Using the Indirect Approach , 2000, Informatica.

[9]  B. Anderson,et al.  ROBUST IDENTIFICATION OF , 2005 .

[10]  M. W. Sage,et al.  Recursive generalised-least-squares procedure for online identification of process parameters , 1969 .

[11]  Andre Lucas Outlier robust unit root analysis , 1996 .

[12]  L. Denby,et al.  Robust Estimation of the First-Order Autoregressive Parameter , 1979 .

[13]  Karl Johan Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .

[14]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[15]  J. Christensen Doctoral thesis , 1970 .

[16]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[17]  Lennart Ljung,et al.  Closed-loop identification revisited , 1999, Autom..

[18]  R. Isermann,et al.  Comparison of six on-line identification and parameter estimation methods , 1974, Autom..

[19]  John G. Proakis,et al.  Digital signal processing (3rd ed.): principles, algorithms, and applications , 1996 .

[20]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[21]  L. Ljung,et al.  Control theory : multivariable and nonlinear methods , 2000 .

[22]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[23]  Ian R. Petersen,et al.  MINIMAX LQG CONTROL , 2006 .

[24]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[25]  Chin-Shung Hsu Digital control systems , 1982, Proceedings of the IEEE.

[26]  T. Söderström,et al.  The Steiglitz-McBride identification algorithm revisited--Convergence analysis and accuracy aspects , 1981 .

[27]  George A. Perdikaris Computer Controlled Systems , 1991 .