Basic tracking using nonlinear continuous-time dynamic models [Tutorial]

Physicists generally express the motion of objects in continuous time using differential equations, whereas the majority of target tracking algorithms use discrete-time models. This paper considers the use of general, nonlinear, continuous-time motion models for use in target tracking algorithms that perform measurements at specific, discrete times. The basics of solving/simulating deterministic/stochastic differential equations is reviewed. The difference between most direct-discrete and continuous-discrete tracking algorithms is the prediction step. Consequently, a number of continuous-time state prediction techniques are presented, focusing on derivative-free techniques. Consistent with common filtering techniques, such as the cubature Kalman filter, Gaussian approximations are used for the propagated state. Three dynamic models are considered for evaluating the performance of the algorithms: a highly nonlinear spiraling motion mode, a multidimensional geometric Brownian model, which has multiplicative noise, and an integrated Ornstein-Uhlenbeck process. Track initiation is also discussed.

[1]  M. Sankowski,et al.  Numerical implementation of continuous-discrete IMM state estimators , 2010, 11-th INTERNATIONAL RADAR SYMPOSIUM.

[2]  P. Zarchan,et al.  Interception of spiraling ballistic missiles , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[3]  Matthew M. Berry,et al.  Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .

[4]  atthew,et al.  Multiplicative Noise and Non-Gaussianity : A Paradigm for Atmospheric Regimes ? , 2001 .

[5]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[6]  Paul Zarchan,et al.  Filtering Strategies For Spiraling Targets , 2000 .

[7]  Ilan Rusnak Bounds on the Root-Mean-Square Miss of Radar-Guided Missiles Against Sinusoidal Target Maneuvers , 2011 .

[8]  R. Tempone,et al.  Convergence Rates for Adaptive Weak Approximation of Stochastic Differential Equations , 2005 .

[9]  Aubrey B. Poore,et al.  Implicit-Runge–Kutta-based methods for fast, precise, and scalable uncertainty propagation , 2015 .

[10]  M. Mallick,et al.  Maximum likelihood geolocation using a ground moving target indicator (GMTI) report , 2002, Proceedings, IEEE Aerospace Conference.

[11]  Aubrey B. Poore,et al.  Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .

[12]  Lijun Wang,et al.  Maneuvering Target Tracking Based on Adaptive Square Root Cubature Kalman Filter Algorithm , 2013 .

[13]  Huimin Chen,et al.  Adaptive cubature Kalman filter for nonlinear state and parameter estimation , 2012, 2012 15th International Conference on Information Fusion.

[14]  Francesco Mainardi,et al.  The Fractional Langevin Equation: Brownian Motion Revisited , 2008, 0806.1010.

[15]  Hermann Singer Parameter Estimation of Nonlinear Stochastic Differential Equations: Simulated Maximum Likelihood versus Extended Kalman Filter and Itô-Taylor Expansion , 2002 .

[16]  X. Rong Li,et al.  A survey of maneuvering target tracking-part VIb: approximate nonlinear density filtering in mixed time , 2010, Defense + Commercial Sensing.

[17]  Hermann Singer Generalized Gauss–Hermite filtering , 2008 .

[18]  S. Coraluppi,et al.  Stability and stationarity in target kinematic modeling , 2012, 2012 IEEE Aerospace Conference.

[19]  Philip W. Sharp High order explicit Runge-Kutta pairs for ephemerides of the Solar System and the Moon , 2000, Adv. Decis. Sci..

[20]  X. Rong Li,et al.  A survey of maneuvering target tracking, part VIc: approximate nonlinear density filtering in discrete time , 2012, Defense + Commercial Sensing.

[21]  Numerical Solution of Ordinary Differential Equations: Greenspan/Numerical , 2008 .

[22]  Yaakov Bar-Shalom,et al.  Kalman filter versus IMM estimator: when do we need the latter? , 2003 .

[23]  Mahendra Mallick,et al.  Comparison of Single-point and Two-point Difference Track Initiation Algorithms Using Position Measurements , 2008 .

[24]  Dimitri P. Bertsekas,et al.  Nonlinear Programming 2 , 2005 .

[25]  Jitendra K. Tugnait,et al.  Validation and Comparison of Coordinated Turn Aircraft Maneuver Models , 2000 .

[26]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[27]  Peter Willett,et al.  Particle filter tracking for long range radars , 2012, Defense + Commercial Sensing.

[28]  LI X.RONG,et al.  Survey of Maneuvering Target Tracking. Part II: Motion Models of Ballistic and Space Targets , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[29]  X. Rong Li,et al.  Multiple-Model Estimation with Variable Structure—Part II: Model-Set Adaptation , 2000 .

[30]  Jack Porter,et al.  Effciency of Covariance Matrix Estimators for Maximum Likelihood Estimation , 2002 .

[31]  Michael E. Lisano Nonlinear consider covariance analysis using a sigma-point filter formulation , 2006 .

[32]  S. Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[33]  L. A. Mcgee,et al.  Discovery of the Kalman filter as a practical tool for aerospace and industry , 1985 .

[34]  Mark R. Morelande,et al.  Continuous-discrete filtering using EKF, UKF, and PF , 2012, 2012 15th International Conference on Information Fusion.

[35]  S MaybeckP,et al.  Investigation of constant turn-rate dynamics models in filters for airborne vehicle tracking. , 1982 .

[36]  Herman Bruyninckx,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [with authors' reply] , 2002, IEEE Trans. Autom. Control..

[37]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[38]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[39]  N. Jeremy Kasdin,et al.  Two-step optimal estimator for three dimensional target tracking , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[40]  Bradley M. Bell,et al.  The Iterated Kalman Smoother as a Gauss-Newton Method , 1994, SIAM J. Optim..

[41]  Xiao,et al.  Nonlinear Kalman Filtering with Numerical Integration , 2011 .

[42]  W. Blair Design of nearly constant velocity filters for radar tracking of maneuvering targets , 2012, 2012 IEEE Radar Conference.

[43]  Feng He,et al.  State estimation of spiral maneuvering target and simulation of three-dimensional intercept , 2011, 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet).

[44]  Dann Laneuville,et al.  Polar versus Cartesian velocity models for maneuvering target tracking with IMM , 2013, 2013 IEEE Aerospace Conference.

[45]  Y. Bar-Shalom,et al.  Trajectory and launch point estimation for ballistic missiles from boost phase LOS measurements , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).

[46]  B. Tapley,et al.  Statistical Orbit Determination , 2004 .

[47]  William Dale Blair,et al.  Design of nearly constant velocity track filters for tracking maneuvering targets , 2008, 2008 11th International Conference on Information Fusion.

[48]  S. Schot,et al.  Jerk: The time rate of change of acceleration , 1978 .

[49]  X. R. Li,et al.  A Survey of Maneuvering Target Tracking—Part III: Measurement Models , 2001 .

[50]  Jeffrey K. Uhlmann,et al.  Corrections to "Unscented Filtering and Nonlinear Estimation" , 2004, Proc. IEEE.

[51]  J. Vigo-Aguiar,et al.  New Itô--Taylor expansions , 2003 .

[52]  John Aitchison,et al.  The Lognormal Distribution with Special Reference to Its Uses in Economics. , 1957 .

[53]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[54]  Nicola Bruti-Liberati,et al.  Strong Predictor-Corrector Euler Methods for Stochastic Differential Equations , 2008 .

[55]  K. Burrage,et al.  Numerical methods for strong solutions of stochastic differential equations: an overview , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[56]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[57]  R. Ardanuy,et al.  Runge-Kutta methods for numerical solution of stochastic differential equations , 2002 .

[58]  Thomas Mazzoni,et al.  Computational aspects of continuous–discrete extended Kalman-filtering , 2008, Comput. Stat..

[59]  R.Y. Novoselov,et al.  Mitigating the effects of residual biases with Schmidt-Kalman filtering , 2005, 2005 7th International Conference on Information Fusion.

[60]  X. Rong Li,et al.  Multiple-model estimation with variable structure. II. Model-set adaptation , 2000, IEEE Trans. Autom. Control..

[61]  Orhan Arikan,et al.  PERFORMANCE EVALUATION OF TRACK ASSOCIATION AND MAINTENANCE FOR A MFPAR WITH DOPPLER VELOCITY MEASUREMENTS , 2010 .

[62]  G. C. Schmidt Designing nonlinear filters based on Daum's theory , 1993 .

[63]  Ting Yuan,et al.  A Multiple IMM Estimation Approach with Unbiased Mixing for Thrusting Projectiles , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[64]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[65]  Aubrey B. Poore,et al.  Batch maximum likelihood (ML) and maximum a posteriori (MAP) estimation with process noise for tracking applications , 2003, SPIE Optics + Photonics.

[66]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[67]  D. Bertsekas Incremental least squares methods and the extended Kalman filter , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[68]  G. N. Lewis,et al.  Future challenges to ballistic missile defense , 1997 .

[69]  Fumiaki Imado,et al.  High-g Barrel Roll Maneuvers Against Proportional Navigation from Optimal Control Viewpoint , 1998 .

[70]  Åke Lindström Finch flock size and risk of hawk predation at a migratory stopover site , 1989 .

[71]  M. Sankowski Continuous-discrete estimation for tracking ballistic missiles in air-surveillance radar , 2011 .

[72]  W.D. Blair,et al.  Tracking maneuvering targets with multiple sensors: does more data always mean better estimates? , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[73]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[74]  S Julier,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" - Reply , 2002 .

[75]  S. F. Schmidt,et al.  Application of State-Space Methods to Navigation Problems , 1966 .

[76]  M. Januszewski,et al.  Accelerating numerical solution of stochastic differential equations with CUDA , 2009, Comput. Phys. Commun..

[77]  A. Rössler,et al.  Adaptive schemes for the numerical solution of SDEs: a comparison , 2002 .

[78]  W. Coffey,et al.  The Langevin equation : with applications to stochastic problems in physics, chemistry, and electrical engineering , 2012 .

[79]  G. Turini Author Reply. , 2017, Urology.

[80]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[81]  Andreas Rößler Strong and Weak Approximation Methods for Stochastic Differential Equations—Some Recent Developments , 2010 .

[82]  X. Rong Li,et al.  A survey of maneuvering target tracking-part VIa: density-based exact nonlinear filtering , 2010, Defense + Commercial Sensing.

[83]  Ville Juhana Väänänen,et al.  Gaussian filtering and smoothing based parameter estimation in nonlinear models for sequential data , 2012 .

[84]  Ralph S. Bryan Cooperative Estimation of Targets by Multiple Aircraft , 1980 .

[85]  Nicola Bruti-Liberati,et al.  Stochastic Differential Equations with Jumps , 2010 .

[86]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[87]  Z. Kazemi,et al.  Weakly stochastic Runge-Kutta method with order 2 , 2008 .

[88]  Aubrey B. Poore,et al.  Adaptive Gaussian Sum Filters for Space Surveillance , 2011, IEEE Transactions on Automatic Control.

[89]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[90]  Xin Tian,et al.  A consistency-based gaussian mixture filtering approach for the contact lens problem , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[91]  S. Särkkä,et al.  On Continuous-Discrete Cubature Kalman Filtering , 2012 .

[92]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[93]  Numerical Solution of Ordinary Differential Equations: For Classical, Relativistic and Nano Systems , 2006 .

[94]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[95]  Peter Willett,et al.  A Low-Complexity Sliding-Window Kalman FIR Smoother for Discrete-Time Models , 2010, IEEE Signal Processing Letters.

[96]  N. F. Toda,et al.  Divergence in the Kalman Filter , 1967 .

[97]  A. P. Douglas,et al.  A batch processing algorithm for moving surface target tracking , 2012, 2012 IEEE Aerospace Conference.

[98]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[99]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[100]  Simo Särkkä,et al.  Gaussian filtering and smoothing for continuous-discrete dynamic systems , 2013, Signal Process..

[101]  C. W. Glover,et al.  Does extra information always help in data fusion? , 1999, Optics & Photonics.

[102]  Andreas Rößler,et al.  Runge-Kutta Methods for the Strong Approximation of Solutions of Stochastic Differential Equations , 2010, SIAM J. Numer. Anal..

[103]  John Bagterp Jørgensen,et al.  A Critical Discussion of the Continuous-Discrete Extended Kalman Filter , 2007 .

[104]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[105]  Y. Bar-Shalom,et al.  Multiple-model estimation with variable structure , 1996, IEEE Trans. Autom. Control..

[106]  M. Briers,et al.  Sequential Bayesian inference and the UKF 2 . 1 , 2004 .

[107]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[108]  P. Zarchan Tracking and intercepting spiraling ballistic missiles , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[109]  K. Lindsay,et al.  A quasi-maximum likelihood method for estimating the parameters of multivariate diffusions , 2013 .

[110]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[111]  Vesselin P. Jilkov,et al.  A survey of maneuvering target tracking: approximation techniques for nonlinear filtering , 2004, SPIE Defense + Commercial Sensing.

[112]  F. W. Cathey,et al.  The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..

[113]  R. Singer Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets , 1970, IEEE Transactions on Aerospace and Electronic Systems.

[114]  Jonathan C. Mattingly,et al.  An adaptive Euler–Maruyama scheme for SDEs: convergence and stability , 2006, math/0601029.

[115]  E. Fehlberg Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control , 1968 .

[116]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[117]  Orhan Arikan,et al.  Performance Evaluation of the Sequential Track Initiation Schemes with 3D Position and Doppler Velocity Measurements , 2009 .

[118]  Gordon T. Haupt,et al.  Optimal Recursive Iterative Algorithm for Discrete Nonlinear Least-Squares Estimation , 1996 .

[119]  THE COOPERATIVE ENGAGEMENT CAPABILITY SYSTEMS DEVELOPMENT The Cooperative Engagement Capability * , 1995 .

[120]  Paul Zarchan,et al.  Fundamentals of Kalman Filtering: A Practical Approach , 2001 .

[121]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[122]  William Dale Blair,et al.  Fixed-gain two-stage estimators for tracking maneuvering targets , 1993 .

[123]  Yaakov Bar-Shalom,et al.  Ballistic missile track initiation from satellite observations , 1994, Defense, Security, and Sensing.

[124]  R. F. Glaser Longitudinal oscillation of launch vehicles , 1973 .

[125]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[126]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[127]  Michael Mertens,et al.  Tracking and Data Fusion for Ground Surveillance , 2014 .

[128]  O. Montenbruck Numerical integration methods for orbital motion , 1992 .

[129]  H. Madsen,et al.  A Computationally Efficient and Robust Implementation of the Continuous-Discrete Extended Kalman Filter , 2007, 2007 American Control Conference.

[130]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[131]  X. Rong Li,et al.  A Survey of Maneuvering Target Tracking—Part IV: Decision-Based Methods , 2002 .

[132]  Jinwhan Kim,et al.  Comparison Between Nonlinear Filtering Techniques for Spiraling Ballistic Missile State Estimation , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[133]  Aubrey B. Poore,et al.  Covariance consistency for track initiation using Gauss-Hermite quadrature , 2010, Defense + Commercial Sensing.

[134]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[135]  Randy Paffenroth,et al.  Mitigation of biases using the Schmidt-Kalman filter , 2007, SPIE Optical Engineering + Applications.

[136]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[137]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[138]  Simon Haykin,et al.  Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations , 2010, IEEE Transactions on Signal Processing.