Highly selective and sensitive xylene sensors using Cr2O3-ZnCr2O4 hetero-nanostructures prepared by galvanic replacement

[1]  Jong Heun Lee,et al.  Highly selective and sensitive xylene sensors using Ni-doped branched ZnO nanowire networks , 2015 .

[2]  Jong‐Heun Lee,et al.  Pure and palladium-loaded Co3O4 hollow hierarchical nanostructures with giant and ultraselective chemiresistivity to xylene and toluene. , 2015, Chemistry.

[3]  Jong‐Heun Lee,et al.  Kilogram-scale synthesis of Pd-loaded quintuple-shelled Co3O4 microreactors and their application to ultrasensitive and ultraselective detection of methylbenzenes. , 2015, ACS applied materials & interfaces.

[4]  Yeon-Tae Yu,et al.  Synthesis of plasmonic Ag@SnO2 core–shell nanoreactors for xylene detection , 2015 .

[5]  Chao Yang,et al.  3D flower- and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors , 2015 .

[6]  I. A. Palani,et al.  Investigation on the influence of dichromate ion on the ZnO nano-dumbbells and ZnCr2O4 nano-walls , 2015, Journal of Materials Science: Materials in Electronics.

[7]  Jong‐Heun Lee,et al.  Co-doped branched ZnO nanowires for ultraselective and sensitive detection of xylene. , 2014, ACS applied materials & interfaces.

[8]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[9]  Jong Heun Lee,et al.  Selective trimethylamine sensors using Cr2O3- decorated SnO2 nanowires , 2014 .

[10]  J. H. Lee,et al.  Enhanced ethanol sensing characteristics of In2O3-decorated NiO hollow nanostructures via modulation of hole accumulation layers. , 2014, ACS applied materials & interfaces.

[11]  Prabhakar Rai,et al.  Cr-doped Co3O4 nanorods as chemiresistor for ultraselective monitoring of methyl benzene , 2014 .

[12]  Dianzeng Jia,et al.  Solid-state chemical synthesis of mesoporous α-Fe2O3 nanostructures with enhanced xylene-sensing properties , 2014 .

[13]  Prabhakar Rai,et al.  Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications. , 2014, Nanoscale.

[14]  Yanshuang Wang,et al.  Brookite TiO2 decorated α-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application , 2014 .

[15]  Yun Chan Kang,et al.  Ultraselective and ultrasensitive detection of trimethylamine using MoO3 nanoplates prepared by ultrasonic spray pyrolysis , 2014 .

[16]  Jong‐Heun Lee,et al.  One-pot synthesis of Pd-loaded SnO(2) yolk-shell nanostructures for ultraselective methyl benzene sensors. , 2014, Chemistry.

[17]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[18]  Ho Won Jang,et al.  Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. , 2013, Nanoscale.

[19]  M. Willinger,et al.  Galvanic Replacement Reactions in Metal Oxide Nanocrystals , 2013, Science.

[20]  Il-Doo Kim,et al.  Thin‐Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled‐Breath‐Sensing Properties for the Diagnosis of Diabetes , 2013 .

[21]  Il-Doo Kim,et al.  Selective and sensitive detection of trimethylamine using ZnO-In2O3 composite nanofibers , 2013 .

[22]  Chan Woong Na,et al.  Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr2O3 hetero-nanostructures , 2012, Nanotechnology.

[23]  Chan Woong Na,et al.  One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection , 2012 .

[24]  Ming Zhuo,et al.  Superior ethanol-sensing properties based on Ni-doped SnO2 p–n heterojunction hollow spheres , 2012 .

[25]  Guoxiu Wang,et al.  Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. , 2012, Chemical communications.

[26]  Yun Chan Kang,et al.  Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres , 2011 .

[27]  Li Liu,et al.  Synthesis, Characterization, and m-Xylene Sensing Properties of Co-ZnO Composite Nanofibers , 2011 .

[28]  C. Xie,et al.  C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature , 2011 .

[29]  Chan Woong Na,et al.  Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. , 2011, Chemical communications.

[30]  S. Gupta,et al.  Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor , 2010 .

[31]  Wei Wang,et al.  Cr2O3-sensitized ZnO electrospun nanofibers based ethanol detectors , 2010 .

[32]  C. Au,et al.  Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. , 2009, Environmental science & technology.

[33]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[34]  Yali Cao,et al.  Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction , 2008 .

[35]  Seok-Jin Yoon,et al.  The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition , 2007 .

[36]  Irina I. Ivanova,et al.  Nanocomposites SnO2/Fe2O3: Sensor and catalytic properties , 2006 .

[37]  Himadri Sekhar Maiti,et al.  Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors , 2006 .

[38]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[39]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[40]  Weimin Du,et al.  Preparation and gas sensing properties of ZnM2O4 (M = Fe, Co, Cr) , 2004 .

[41]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[42]  L. Mancic,et al.  Morphology, Structure and Nonstoichiometry of ZnCr2O4 Nanophased Powder , 2003 .

[43]  R. Freer,et al.  NO2 sensitivity of a heterojunction sensor based on WO3 and doped SnO2 , 2003 .

[44]  A. Cornet,et al.  Mesoporous catalytic filters for semiconductor gas sensors , 2003 .

[45]  F. Rainone,et al.  Catalytic oxidation of toluene with molecular oxygen over Cr-substituted mesoporous materials , 2003 .

[46]  Richard J. Ewen,et al.  Highly sensitive mixed oxide sensors for the detection of ethanol , 2002 .

[47]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[48]  G. N. Pirogova,et al.  Catalytic properties of chromites with a spinel structure in the oxidation of CO and hydrocarbons and reduction of nitrogen oxides , 2001 .

[49]  Norio Miura,et al.  Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides , 2000 .

[50]  B. Costello,et al.  A study of the catalytic and vapour-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide , 1999 .

[51]  Makoto Egashira,et al.  Basic Aspects and Challenges of Semiconductor Gas Sensors , 1999 .

[52]  M. Rumyantseva,et al.  Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure , 1999 .

[53]  Michele Penza,et al.  NOX GAS SENSING CHARACTERISTICS OF WO3 THIN FILMS ACTIVATED BY NOBLE METALS (PD, PT, AU) LAYERS , 1998 .

[54]  R. G. Pavelko,et al.  Hydrogen sensors on the basis of SnO2-TiO2 systems , 2011 .