The influence of cross-sectional channel geometry on rheology and flux estimates for active lava flows

Lava rheology and effusion rate are critical factors in determining the evolution of lava flows. However, direct and accurate field measurements are difficult to carry out, and estimates are usually based on measurements of the flow’s surface velocity and assumptions of sub-surface geometry. Using numerical flow models, we show that the potential for error due to geometry uncertainty is minimized if a semi-elliptical cross-sectional channel shape is assumed. Flow is simulated for isothermal Newtonian, temperature-dependent Newtonian, and isothermal power-law rheology lavas. For isothermal Newtonian lava, we find that the error in channel shape alone can make apparent viscosity estimates ∼3.5 times too large (e.g., for inappropriate use of the Jeffreys equation on a narrow semi-elliptical channel). For a temperature-dependent rheology, using an analytical approximation for Newtonian flow in a semi-elliptical geometry yields apparent viscosity and flux values that are more accurate than estimates which assume a rectangular geometry, for all channel shapes considered, including rectangular channels. Viscosity calculations for real channels on Mauna Loa and Mount Etna show that for a Newtonian rheology, a semi-elliptical analytical solution gives an approximation three times closer to the actual viscosity than a rectangle with the same depth while, if the lava is shear-thinning (power law exponent m = 0.6), a rectangular approximation is 15 % more accurate. Our results can be used to bracket possible viscosity and flux estimates when channel topography is poorly constrained.

[1]  J. Kauahikaua Lava Flow Hazard Assessment, as of August 2007, for Kilauea East Rift Zone Eruptions, Hawai`i Island , 2007 .

[2]  Robert L. Nichols,et al.  Viscosity of Lava , 1939, The Journal of Geology.

[3]  Mark R. Rosiek,et al.  Emplacement of the youngest flood lava on Mars: A short, turbulent story , 2010 .

[4]  P. Mouginis-Mark,et al.  Rheology of a long lava flow at Pavonis Mons, Mars , 2003 .

[5]  R. C. Kerr,et al.  Solidification dynamics in channeled viscoplastic lava flows , 2012 .

[6]  Andrew J. L. Harris,et al.  The changing morphology of an open lava channel on Mt. Etna , 2006 .

[7]  Stuart Robson,et al.  Image‐based measurement of flux variation in distal regions of active lava flows , 2007 .

[8]  A. Harris,et al.  One-, two- and three-phase viscosity treatments for basaltic lava flows. , 2008, Journal of geophysical research.

[9]  Ernst Hauber,et al.  Lava flow rheology: A comparison of morphological and petrological methods , 2013 .

[10]  B. Zimanowski,et al.  Non‐Newtonian viscosity of basaltic magma , 2006 .

[11]  Herbert R. Shaw,et al.  Rheology of Basalt in the Melting Range , 1969 .

[12]  A. Borgia,et al.  Rheology of melts and magmatic suspensions: 1. Design and calibration of concentric cylinder viscometer with application to rhyolitic magma , 1988 .

[13]  J. Zimbelman Emplacement of long lava flows on planetary surfaces , 1998 .

[14]  R. W. Griffiths,et al.  Radial spreading of viscous-gravity currents with solidifying crust , 1990, Journal of Fluid Mechanics.

[15]  G. Hulme,et al.  The Interpretation of Lava Flow Morphology , 1974 .

[16]  R. Sparks,et al.  The 1975 sub-terminal lavas, mount etna: a case history of the formation of a compound lava field , 1976 .

[17]  S. Baloga,et al.  New statistics for estimating the bulk rheology of active lava flows: Puu Oo examples , 1998 .

[18]  Maria Teresa Pareschi,et al.  Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data , 2005 .

[19]  Tamotsu Takahashi,et al.  What is debris flow , 2007 .

[20]  G. Neukum,et al.  Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data , 2007 .

[21]  T. Gregg,et al.  A laboratory investigation into the effects of slope on lava flow morphology , 2000 .

[22]  D. Dingwell,et al.  Viscosity of magmatic liquids: A model , 2008 .

[23]  Ralph O. Kehle,et al.  Physical Processes in Geology , 1972 .

[24]  K. Gwinner,et al.  The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars , 2009 .

[25]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[26]  Harold Jeffreys M.A. D.Sc. LXXXIV. The flow of water in an inclined channel of rectangular section , 1925 .

[27]  D. Fornari,et al.  Paving the seafloor: Volcanic emplacement processes during the 2005–2006 eruptions at the fast spreading East Pacific Rise, 9°50′N , 2010 .

[28]  David C. Pieri,et al.  Crystallization history of the 1984 Mauna Loa lava flow , 1994 .

[29]  A. Harris,et al.  FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel , 2001 .

[30]  S. Sakimoto,et al.  Channeled flow: Analytic solutions, laboratory experiments, and applications to lava flows , 2001 .

[31]  Andrea Tallarico,et al.  Viscous Newtonian laminar flow in a rectangular channel: application to Etna lava flows , 1999 .

[32]  A. Harris,et al.  Lava effusion rate definition and measurement: a review , 2007 .

[33]  G. Walker Thickness and Viscosity of Etnean Lavas , 1967, Nature.

[34]  G. M. Crisci,et al.  Lava-flow hazard on the SE flank of Mt. Etna (Southern Italy) , 2008 .

[35]  E. Hauber,et al.  Very recent and wide‐spread basaltic volcanism on Mars , 2011 .

[36]  R. C. Kerr,et al.  Isothermal dynamics of channeled viscoplastic lava flows and new methods for estimating lava rheology , 2012 .

[37]  J. Fink,et al.  Rheology of the 1983 Royal Gardens basalt flows, Kilauea Volcano, Hawaii , 1986 .

[38]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[39]  M. Mcpherson,et al.  Introduction to fluid mechanics , 1997 .

[40]  H. Huppert,et al.  The effect of confining boundaries on viscous gravity currents , 2006, Journal of Fluid Mechanics.

[41]  L. Keszthelyi,et al.  The emplacement of pahoehoe toes: field observations and comparison to laboratory simulations , 2004 .

[42]  Lionel Wilson,et al.  Factors controlling the lengths of channel-fed lava flows , 1994 .

[43]  C. Kilburn,et al.  Lava Flows and Flow Fields , 2000 .

[44]  K. Dean,et al.  Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Approach and analysis , 2004 .

[45]  B. Behncke,et al.  Lava flow hazard at Mount Etna (Italy): New data from a GIS-based study , 2005 .

[46]  R. C. Kerr,et al.  Patterns of solidification in channel flows with surface cooling , 2003, Journal of Fluid Mechanics.

[47]  R. S. J. Sparks,et al.  Field measurements of the rheology of lava , 1978, Nature.