The Genome Sequence of the Crenarchaeon Acidilobus saccharovorans Supports a New Order, Acidilobales, and Suggests an Important Ecological Role in Terrestrial Acidic Hot Springs
暂无分享,去创建一个
Konstantin G. Skryabin | Andrey V. Mardanov | N. Ravin | K. Skryabin | A. Mardanov | E. Bonch‐Osmolovskaya | A. Beletsky | V. Svetlitchnyi | M. Prokofeva | Vitali A. Svetlitchnyi | Alexey V. Beletsky | Maria I. Prokofeva | Elizaveta A. Bonch-Osmolovskaya | Nikolai V. Ravin
[1] E. Bonch‐Osmolovskaya,et al. Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. , 2009, International journal of systematic and evolutionary microbiology.
[2] J. Lobry. Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.
[3] T. Friedrich,et al. The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane‐bound multisubunit hydrogenases , 2000, FEBS letters.
[4] Philip Hinchliffe,et al. Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus , 2006, Science.
[5] Luke E. Ulrich,et al. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota , 2009, BMC Genomics.
[6] J. Holden,et al. Citric Acid Cycle in the Hyperthermophilic Archaeon Pyrobaculum islandicum Grown Autotrophically, Heterotrophically, and Mixotrophically with Acetate , 2006, Journal of bacteriology.
[7] E. Bonch‐Osmolovskaya,et al. Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. , 2000, International journal of systematic and evolutionary microbiology.
[8] P. A. Rea,et al. A thermostable vacuolar‐type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate‐energized pumps , 1999, FEBS letters.
[9] N. Ravin,et al. Complete Genome Sequence of the Anaerobic, Protein-Degrading Hyperthermophilic Crenarchaeon Desulfurococcus kamchatkensis , 2008, Journal of bacteriology.
[10] C. Sensen,et al. Reconstruction of the Central Carbohydrate Metabolism of Thermoproteus tenax by Use of Genomic and Biochemical Data , 2004, Journal of bacteriology.
[11] S. Salzberg,et al. Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.
[12] R. Fleischmann,et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.
[13] S. Brunak,et al. Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.
[14] Gertraud Burger,et al. AutoFACT: An Automatic Functional Annotation and Classification Tool , 2005, BMC Bioinformatics.
[15] E. Boyd,et al. Isolation, Characterization, and Ecology of Sulfur-Respiring Crenarchaea Inhabiting Acid-Sulfate-Chloride-Containing Geothermal Springs in Yellowstone National Park , 2007, Applied and Environmental Microbiology.
[16] Peter F. Hallin,et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.
[17] B. Tjaden,et al. The central carbohydrate metabolism of the hyperthermophilic crenarchaeote Thermoproteus tenax: pathways and insights into their regulation , 2008, Archives of Microbiology.
[18] N. Ravin,et al. Metabolic Versatility and Indigenous Origin of the Archaeon Thermococcus sibiricus, Isolated from a Siberian Oil Reservoir, as Revealed by Genome Analysis , 2009, Applied and Environmental Microbiology.
[19] K. Hallberg,et al. Carbon, iron and sulfur metabolism in acidophilic micro-organisms. , 2009, Advances in microbial physiology.
[20] S. Eddy,et al. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.
[21] K. Suzuki,et al. Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. , 2003, International journal of systematic and evolutionary microbiology.
[22] P. Schönheit,et al. Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle , 1994, Archives of Microbiology.
[23] E. Jayamani,et al. Energy Conservation via Electron-Transferring Flavoprotein in Anaerobic Bacteria , 2007, Journal of bacteriology.
[24] C. Schleper,et al. Genome sequence of Picrophilus torridus and its implications for life around pH 0 , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[25] B. Berks,et al. Specificity of respiratory pathways involved in the reduction of sulfur compounds by Salmonella enterica. , 2002, Microbiology.
[26] H. Huber,et al. A sodium ion‐dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus , 2007, The FEBS journal.
[27] Dmitrij Frishman,et al. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum , 2000, Nature.
[28] Michael W. W. Adams,et al. Insights into the Metabolism of Elemental Sulfur by the Hyperthermophilic Archaeon Pyrococcus furiosus: Characterization of a Coenzyme A- Dependent NAD(P)H Sulfur Oxidoreductase , 2007, Journal of bacteriology.
[29] L. Sazanov,et al. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. , 2007, Biochemistry.
[30] Thomas L. Madden,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.
[31] A Grigoriev,et al. Analyzing genomes with cumulative skew diagrams. , 1998, Nucleic acids research.