ASLPrep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion

Maxwell A. Bertolero | Matthew W Flounders | Phillip A. Cook | Tinashe M. Tapera | Ellyn R. Butler | R. Poldrack | L. Petrucelli | K. Rankin | R. Gur | R. Gur | J. Phillips | M. Milham | C. Davatzikos | J. Detre | K. Kantarci | L. Apostolova | D. Galasko | M. Grossman | D. Knopman | M. Cieslak | J. Kramer | M. Tisdall | S. Weintraub | J. Masdeu | S. Barmada | T. Foroud | A. Boxer | D. Roalf | T. Satterthwaite | J. Kornak | E. Huey | I. Litvan | H. Heuer | K. Faber | N. Graff-Radford | Bradley Boeve | D. Irwin | K. Rascovsky | K. Domoto-Reilly | E. Roberson | I. Mackenzie | M. Tartaglia | D. Oathes | A. Adebimpe | C. Onyike | P. Pressman | Dennis Dickson | A. Staffaroni | H. Mutsaerts | D. Lucente | D. Kerwin | M. Elliott | R. Gavrilova | R. Savica | A. Bozoki | C. Olm | H. Rosen | M. Bertolero | Dale Zhou | J. Fields | A. Ritter | E. Ramos | G. Léger | J. Goldman | D. Brushaber | L. Forsberg | G. R. Hsiung | J. Syrjanen | B. Wong | S. Dolui | Y. Bordelon | W. Seeley | P. Ljubenkov | Diego G. Dávila | Kristin Murtha | B. Appleby | E. Baller | Zbigniew W. Wszolek | William Tackett | Jeremy A. Syrjanen | Alexandre R. Franco | W. Kremers | Vijay Ramanan | Oscar Esteban | D. Kaufer | Stan Colcombe | Sydney Covitz | Basma Jaber | Corey McMillian | Michael Milham | Mario F. Mendez | L. VandeVrede | I. Grant | Julio C Rojas-Martinez | J. Graff-Radford | R. Rademakers | D. Zhou | Carly T. Mester | D. Clark | David T. Jones | Maria Lapid | Daniel H. Geschwind | Bruce L. Miller | A. L. Lago | Eric J. Huang | R. Gur | G. Coppola | S. Covitz | Tania Gendron | Matthew W. Flounders | H. Rosen | Matthew Hall | Liana Brian Sami Yvette Hugo Adam L. Andrea Danielle Dav Apostolova Appleby Barmada Bordelon Botha B | Hugo Botha | Ryan Darby | Annette Fagan | Scott McGinnis | M. B. Pascual | Meghana Rao | Jack Taylor | Sudipto Dolui | Dennis W. Dickson | B. Miller | Peter A. Ljubenkov | Bonnie Wong | Tania F. Gendron | M. Grossman | William Seeley | R. E. Gur | Max Bertolero | Stan Colcombe | R. Gur | Zbigniew Wszolek | Danielle E. Brushaber | T. Gendron | William W. Seeley | Kimiko Domoto-Reilly | L. Vandevrede | Danielle Brushaber | R. Darby

[1]  Richard F. Betzel,et al.  QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data , 2021, Nature Methods.

[2]  Juan Antonio Hernández Tamames,et al.  Partial volume correction in arterial spin labeling perfusion MRI: A method to disentangle anatomy from physiology or an analysis step too far? , 2021, NeuroImage.

[3]  John D. Murray,et al.  Generative modeling of brain maps with spatial autocorrelation , 2020, NeuroImage.

[4]  J. Detre,et al.  Arterial spin labeling versus 18F-FDG-PET to identify mild cognitive impairment , 2019, NeuroImage: Clinical.

[5]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[6]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[7]  Russell T. Shinohara,et al.  Common and Dissociable Regional Cerebral Blood Flow Differences Associate with Dimensions of Psychopathology Across Categorical Diagnoses , 2017, Molecular Psychiatry.

[8]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[9]  J. Detre,et al.  Structural Correlation‐based Outlier Rejection (SCORE) algorithm for arterial spin labeling time series , 2017, Journal of magnetic resonance imaging : JMRI.

[10]  S. Wood Generalized Additive Models: An Introduction with R, Second Edition , 2017 .

[11]  Satrajit S. Ghosh,et al.  BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods , 2016, bioRxiv.

[12]  Satrajit S. Ghosh,et al.  The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments , 2016, Scientific Data.

[13]  Mark A. Elliott,et al.  The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth , 2016, NeuroImage.

[14]  G. Zaharchuk,et al.  3D Pseudocontinuous arterial spin labeling in routine clinical practice: A review of clinically significant artifacts , 2016, Journal of Magnetic Resonance Imaging.

[15]  Christina E. Wierenga,et al.  The Utility of Cerebral Blood Flow as a Biomarker of Preclinical Alzheimer’s Disease , 2016, Cellular and molecular neurobiology.

[16]  G. Zaharchuk,et al.  Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. , 2015, Magnetic resonance in medicine.

[17]  Efstathios D. Gennatas,et al.  Impact of puberty on the evolution of cerebral perfusion during adolescence , 2014, Proceedings of the National Academy of Sciences.

[18]  H Raoult,et al.  Arterial spin labeling (ASL) perfusion: techniques and clinical use. , 2013, Diagnostic and interventional imaging.

[19]  Simon B. Eickhoff,et al.  An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data , 2013, NeuroImage.

[20]  Margaret D. King,et al.  The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry , 2012, Front. Neurosci..

[21]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[22]  S. Herculano‐Houzel The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost , 2012, Proceedings of the National Academy of Sciences.

[23]  Weiying Dai,et al.  Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging , 2012, Magnetic resonance in medicine.

[24]  Iris Asllani,et al.  Arterial Spin Labeling (ASL) fMRI: Advantages, Theoretical Constrains and Experimental Challenges in Neurosciences , 2012, Int. J. Biomed. Imaging.

[25]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[26]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[27]  P Jezzard,et al.  Partial volume correction of multiple inversion time arterial spin labeling MRI data , 2011, Magnetic resonance in medicine.

[28]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[29]  Bruce Fischl,et al.  Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.

[30]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[31]  Mark W. Woolrich,et al.  Combined spatial and non-spatial prior for inference on MRI time-series , 2009, NeuroImage.

[32]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[33]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[34]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[35]  Mark Jenkinson,et al.  Fast, automated, N‐dimensional phase‐unwrapping algorithm , 2003, Magnetic resonance in medicine.

[36]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[37]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[38]  S Warach,et al.  A general kinetic model for quantitative perfusion imaging with arterial spin labeling , 1998, Magnetic resonance in medicine.

[39]  R. Buxton,et al.  Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) , 1998 .

[40]  Donald S. Williams,et al.  Perfusion imaging , 1992, Magnetic resonance in medicine.