Estimating aspiration levels from discrete choices - computational techniques and experiences

Abstract This paper discusses the problem of estimating aspiration or reference levels in criteria space from choices between alternatives characterized by multiple criteria. Several methods for such estimations are developed and compared, taking into account both solution quality and computational efficiency. Methods based on mixed integer linear programming, which provide optimal solutions, require unacceptable computing times for application in interactive systems. An alternative method, based on a direct search algorithm, is shown to be an effective way of generating high quality estimates with small computational effort.

[1]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[2]  G. W. Evans,et al.  An Overview of Techniques for Solving Multiobjective Mathematical Programs , 1984 .

[3]  Philippe Vincke,et al.  Analysis of multicriteria decision aid in Europe , 1986 .

[4]  A. Charnes,et al.  Management Models and Industrial Applications of Linear Programming , 1961 .

[5]  Proper efficiency in nonconvex vector-maximization-problems , 1991 .

[6]  Gregory W. Fischer,et al.  UTILITY MODELS FOR MULTIPLE OBJECTIVE DECISIONS: DO THEY ACCURATELY REPRESENT HUMAN PREFERENCES?* , 1979 .

[7]  Daniel Vanderpooten The Use of Preference Information in Multiple Criteria Interactive Procedures , 1989 .

[8]  S. Zionts,et al.  Theory of convex cones in multicriteria decision making , 1988 .

[9]  Wan Seon Shin,et al.  Interactive multiple objective optimization: Survey I - continuous case , 1991, Comput. Oper. Res..

[10]  Lech Krus,et al.  Simulation of an Interactive Method Supporting Collective Decision Making Using a Regional Development Model , 1984 .

[11]  Murat Köksalan,et al.  IDENTIFYING AND RANKING A MOST PREFERRED SUBSET OF ALTERNATIVES IN THE PRESENCE OF MULTIPLE CRITERIA , 1989 .

[12]  Murat Köksalan,et al.  Experiments and an Improved Method for Solving the Discrete Alternative Multiple-criteria Problem , 1991 .

[13]  Dan Horsky,et al.  Estimation of Attribute Weights from Preference Comparisons , 1984 .

[14]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[15]  Herbert Moskowitz,et al.  ASSESSMENT OF MULTIATTRIBUTED MEASURABLE VALUE AND UTILITY FUNCTIONS VIA MATHEMATICAL PROGRAMMING , 1985 .

[16]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[17]  S. Zionts,et al.  Solving the Discrete Multiple Criteria Problem using Convex Cones , 1984 .

[18]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[19]  Mark Gershon,et al.  The role of weights and scales in the application of multiobjective decision making , 1984 .

[20]  P. Vincke,et al.  Multicriteria analysis: survey and new directions , 1981 .

[21]  Martin Weber A Method of Multiattribute Decision Making with Incomplete Information , 1985 .

[22]  Allan D. Shocker,et al.  Estimating the weights for multiple attributes in a composite criterion using pairwise judgments , 1973 .

[23]  C. K. Mustafi,et al.  Mixed-Integer Linear-Programming Formulation of a Multi-Attribute Threshold Model of Choice , 1985 .

[24]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[25]  Abraham Charnes,et al.  Optimal Estimation of Executive Compensation by Linear Programming , 1955 .

[26]  George P. Huber,et al.  METHODS FOR QUANTIFYING SUBJECTIVE PROBABILITIES AND MULTI‐ATTRIBUTE UTILITIES*† , 1974 .

[27]  C. C. Waid,et al.  An Experimental Comparison of Different Approaches to Determining Weights in Additive Utility Models , 1982 .

[28]  Stelios H. Zanakis,et al.  A categorized bibliographic survey of goal programming , 1985 .

[29]  Helmuth Späth,et al.  Algorithmen für multivariable Ausgleichsmodelle , 1974 .