Obfuscation from Polynomial Hardness: Beyond Decomposable Obfuscation

Every known construction of general indistinguishability obfuscation (\(\mathsf {i}\mathcal {O}\)) is either based on a family of exponentially many assumptions, or is based on a single assumption – e.g. functional encryption (\(\mathsf {FE}\)) – using a reduction that incurs an exponential loss in security. This seems to be an inherent limitation if we insist on providing indistinguishability for any pair of functionally equivalent circuits.

[1]  Fuyuki Kitagawa,et al.  Indistinguishability Obfuscation for All Circuits from Secret-Key Functional Encryption , 2017, IACR Cryptol. ePrint Arch..

[2]  Nir Bitansky,et al.  Perfect Structure on the Edge of Chaos - Trapdoor Permutations from Indistinguishability Obfuscation , 2016, TCC.

[3]  Nir Bitansky,et al.  On the Cryptographic Hardness of Finding a Nash Equilibrium , 2015, FOCS.

[4]  S. Micali,et al.  How To Construct Randolli Functions , 1984, FOCS 1984.

[5]  Abhishek Jain,et al.  Indistinguishability Obfuscation from Compact Functional Encryption , 2015, CRYPTO.

[6]  Nir Bitansky,et al.  Indistinguishability Obfuscation from Functional Encryption , 2018, J. ACM.

[7]  Mark Zhandry,et al.  Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation , 2014, CRYPTO.

[8]  Stefano Tessaro,et al.  Indistinguishability Obfuscation from Trilinear Maps and Block-Wise Local PRGs , 2017, CRYPTO.

[9]  Sanjam Garg,et al.  Single-Key to Multi-Key Functional Encryption with Polynomial Loss , 2016, TCC.

[10]  Mark Zhandry,et al.  Breaking the Sub-Exponential Barrier in Obfustopia , 2017, EUROCRYPT.

[11]  Brent Waters,et al.  Witness encryption and its applications , 2013, STOC '13.

[12]  Sanjam Garg,et al.  Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium , 2016, CRYPTO.

[13]  Rafael Pass,et al.  Indistinguishability Obfuscation from Semantically-Secure Multilinear Encodings , 2014, CRYPTO.

[14]  A. Sahai,et al.  Indistinguishability Obfuscation from Functional Encryption for Simple Functions Prabhanjan Ananth , 2015 .

[15]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[16]  Huijia Lin,et al.  Indistinguishability Obfuscation from Constant-Degree Graded Encoding Schemes , 2016, EUROCRYPT.

[17]  Nir Bitansky,et al.  Perfect Structure on the Edge of Chaos , 2015, IACR Cryptol. ePrint Arch..

[18]  Mark Zhandry,et al.  Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation , 2014, Algorithmica.

[19]  Vinod Vaikuntanathan,et al.  Indistinguishability Obfuscation from DDH-Like Assumptions on Constant-Degree Graded Encodings , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[20]  Amit Sahai,et al.  Projective Arithmetic Functional Encryption and Indistinguishability Obfuscation from Degree-5 Multilinear Maps , 2017, EUROCRYPT.

[21]  Mark Zhandry,et al.  Decomposable Obfuscation: A Framework for Building Applications of Obfuscation from Polynomial Hardness , 2017, TCC.

[22]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[23]  Nir Bitansky,et al.  From Cryptomania to Obfustopia Through Secret-Key Functional Encryption , 2016, Journal of Cryptology.

[24]  Allison Bishop,et al.  Indistinguishability Obfuscation from the Multilinear Subgroup Elimination Assumption , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[25]  Yael Tauman Kalai,et al.  Protecting Obfuscation against Algebraic Attacks , 2014, EUROCRYPT.