High-efficiency light emission by means of exciton–surface-plasmon coupling

Abstract Coupling between surface plasmons (SPs) and excitons can be used to enhance the emission efficiencies of light-emitting materials and devices. This approach had been theoretically predicted and, in 2004, was experimentally demonstrated by our group for enhancing the visible emission from InGaN/GaN quantum wells (QWs). Exciton–SP coupling increases the spontaneous emission rates of the excited states, causes a relative reduction in nonradiative relaxation, and ultimately increases the internal quantum efficiencies (IQEs) of such devices. Here, we present a brief history of the increases in emission efficiency that have been achieved and the underlying mechanism thereof. This method has the potential to enable the development of high-efficiency light-emitting diodes (LEDs), eventually leading to the replacement of fluorescent lights with solid-state light sources. After the initial discovery of this phenomenon, many device structures were proposed and reported; however, their emission efficiencies have thus far remained insufficient for practical application. Here, we also present recent progress on device applications and the current problems that must be solved. Finally, we explain the future possibilities regarding the extension of SP-enhanced light emission over a broader wavelength region, from the deep ultraviolet (UV) to the infrared (IR).

[1]  Shizuo Fujita,et al.  Wide-bandgap semiconductor materials: For their full bloom , 2014 .

[2]  Seung-Gol Lee,et al.  Enhancement of electroluminescence in GaN-based light-emitting diodes by metallic nanoparticles , 2010 .

[3]  M. R. Kim,et al.  Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. , 2011, Journal of the American Chemical Society.

[4]  A. Maradudin,et al.  Theory of dielectrics , 1949 .

[5]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[6]  Gun Young Jung,et al.  Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN , 2011 .

[7]  A. Borisov,et al.  Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna. , 2013, Nano letters.

[8]  Yoichi Kawakami,et al.  Enhancements of emission rates and efficiencies by surface plasmon coupling , 2010 .

[9]  Y. Kiang,et al.  Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN , 2013 .

[10]  April S. Brown,et al.  UV Plasmonic Behavior of Various Metal Nanoparticles in the Near- and Far-Field Regimes: Geometry and Substrate Effects , 2013 .

[11]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[12]  C. J. Powell,et al.  Origin of the Characteristic Electron Energy Losses in Magnesium , 1959 .

[13]  Domenico Pacifici,et al.  Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. , 2005, Nano letters.

[14]  Hilmi Volkan Demir,et al.  Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. , 2013, Nano letters.

[15]  Jaime Gómez Rivas,et al.  Metallic nanostructures for efficient LED lighting , 2016, Light: Science & Applications.

[16]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[17]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[18]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[19]  Igor Zorić,et al.  Localized surface plasmon resonances in aluminum nanodisks. , 2008, Nano letters.

[20]  P Lalanne,et al.  Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. , 2013, Physical review letters.

[21]  Nian‐Hai Shen,et al.  Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding , 2006 .

[22]  Takashi Mukai,et al.  In inhomogeneity and emission characteristics of InGaN , 2001 .

[23]  Il-Kyu Park,et al.  Surface‐Plasmon‐Enhanced Light‐Emitting Diodes , 2008 .

[24]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[25]  T. Araki,et al.  Plasmon-induced Purcell effect in InN/In metal-semiconductor nanocomposites , 2010 .

[26]  Xiaodong Hu,et al.  Practicable alleviation of efficiency droop effect using surface plasmon coupling in GaN-based light emitting diodes , 2013 .

[27]  Roberto Paiella,et al.  Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement , 2005 .

[28]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[29]  Davy Gérard,et al.  Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films , 2013 .

[30]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[31]  E. Gornik,et al.  Strongly directional emission from AlGaAs/GaAs light emitting diodes , 1990, ESSDERC '90: 20th European Solid State Device Research Conference.

[32]  K. Bando,et al.  Development of High-bright and Pure-white LED Lamps , 1998 .

[33]  M. Dresselhaus,et al.  Ultrasmall Mode Volumes in Plasmonic Cavities of Nanoparticle-On-Mirror Structures. , 2016, Small.

[34]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[35]  Seung-Gol Lee,et al.  Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance , 2009 .

[36]  Yoichi Kawakami,et al.  Highly enhanced green emission from InGaN quantum wells due to surface plasmon resonance on aluminum films , 2015 .

[37]  Paul Michael Petersen,et al.  Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement , 2014, Scientific Reports.

[38]  Junxi Wang,et al.  Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes , 2011 .

[39]  Jean-Jacques Greffet,et al.  Quantum theory of spontaneous and stimulated emission of surface plasmons , 2010, 1004.0135.

[40]  H. Solak,et al.  Plasmon resonances of aluminum nanoparticles and nanorods , 2008 .

[41]  Yean-Woei Kiang,et al.  Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling , 2010 .

[42]  D. Lei,et al.  Tunable surface plasmon mediated emission from semiconductors by using metal alloys , 2007 .

[43]  Harry A. Atwater The promise of plasmonics. , 2007 .

[44]  Kitson,et al.  Full Photonic Band Gap for Surface Modes in the Visible. , 1996, Physical review letters.

[45]  M. Toma,et al.  Tuning Colors of Silver Nanoparticle Sheets by Multilayered Crystalline Structures on Metal Substrates , 2013, Plasmonics.

[46]  Yong-Hoon Cho,et al.  Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles , 2011 .

[47]  Pieter G. Kik,et al.  SURFACE PLASMON NANOPHOTONICS , 2007 .

[48]  S. Kawata,et al.  Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling. , 2005, Optics letters.

[49]  Nicolas Large,et al.  Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. , 2013, Nano letters.

[50]  B. Dubertret,et al.  Strong Purcell effect observed in single thick-shell CdSe/CdS nanocrystals coupled to localized surface plasmons , 2011, 1111.3836.

[51]  Jeng-Jie Huang,et al.  Surface Plasmon Leakage in Its Coupling with an InGaN/GaN Quantum Well through an Ohmic Contact , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[52]  Junyong Kang,et al.  Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells , 2012, Scientific Reports.

[53]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[54]  Eli Yablonovitch,et al.  Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling , 2002, cond-mat/0204150.

[55]  Manijeh Razeghi,et al.  Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111) , 2013 .

[56]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[57]  K. Okamoto,et al.  High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[58]  M. Funato,et al.  Grain size dependence of surface plasmon enhanced photoluminescence. , 2013, Optics express.

[59]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[60]  Nelson Tansu,et al.  Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes , 2011 .

[61]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[62]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[63]  R. Oulton,et al.  Exciton–Plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles , 2016, Advanced materials.

[64]  Richard A. Soref,et al.  Practicable enhancement of spontaneous emission using surface plasmons , 2007 .

[65]  W. Schaff,et al.  Optical properties of InN related to surface plasmons , 2005 .

[66]  Yen-Lin Lai,et al.  Enhancement of Green Emission from InGaN/GaN Multiple Quantum Wells via Coupling to Surface Plasmons in a Two‐Dimensional Silver Array , 2011 .

[67]  A. Saito,et al.  Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode , 2010 .

[68]  Jakub Dostalek,et al.  Plasmon-Enhanced Fluorescence Biosensors: a Review , 2013, Plasmonics.

[69]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters , 2018 .

[70]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[71]  J. Kang,et al.  Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode , 2011 .

[72]  Yoichi Kawakami,et al.  Surface plasmon enhanced light emission from semiconductor materials , 2008 .

[73]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[74]  Chih-Chung Yang,et al.  Surface plasmon coupling effect in an InGaN∕GaN single-quantum-well light-emitting diode , 2007 .

[75]  Eli Yablonovitch,et al.  Coupling of InGaN quantum-well photoluminescence to silver surface plasmons , 1999 .

[76]  C. Kao,et al.  Localized Surface Plasmon-Enhanced Nitride-Based Light-Emitting Diode With Ag Nanotriangle Array by Nanosphere Lithography , 2010, IEEE Photonics Technology Letters.

[77]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[78]  Axel Scherer,et al.  Surface plasmon enhanced emission from dye doped polymer layers. , 2005, Optics express.

[79]  Takashi Mukai,et al.  Surface plasmon enhanced bright light emission from InGaN/GaN , 2007 .

[80]  P. Chu,et al.  Light-emitting diodes enhanced by localized surface plasmon resonance , 2011, Nanoscale research letters.

[81]  Masuo Fukui,et al.  Lifetimes of surface plasmons in thin silver films , 1979 .

[82]  G. Schatz,et al.  Aluminum and Indium Plasmonic Nanoantennas in the Ultraviolet , 2014 .

[83]  Chih-Chung Yang,et al.  Influence of the quantum-confined stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement , 2007 .

[84]  A. Kildishev,et al.  Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber , 2014, Advanced materials.

[85]  Koichi Okamoto,et al.  Fabrication and evaluation of plasmonic light-emitting diodes with thin p-type layer and localized Ag particles embedded by ITO , 2017 .

[86]  Y. Kiang,et al.  Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating , 2008 .

[87]  Zhengfen Wan,et al.  Enhancement of light emission from nanostructured In(2)O(3) via surface plasmons. , 2010, Optics express.

[88]  Takashi Mukai,et al.  Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy , 2005 .

[89]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[90]  Zu-Po Yang,et al.  Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons , 2016, Scientific Reports.

[91]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[92]  Chunxiang Xu,et al.  Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices , 2016, Scientific Reports.

[93]  Guofan Jin,et al.  Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating. , 2013, Optics express.

[94]  Motoichi Ohtsu,et al.  Surface plasmon enhanced UV emission in AlGaN/GaN quantum well , 2010 .

[95]  Yasuhiro Ikezoe,et al.  Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet. , 2011, Physical chemistry chemical physics : PCCP.

[96]  A. Scherer,et al.  Surface plasmon enhanced light emission from CdSe quantum dot nanocrystals , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[97]  Shunsuke Murai,et al.  Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources , 2013, Light: Science & Applications.

[98]  A. Scherer,et al.  Near-field scanning optical microscopic transient lens for carrier dynamics study in InGaN∕GaN , 2005 .

[99]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[100]  E. Gornik,et al.  Surface plasmon polariton enhanced light emission from Schottky diodes , 1988 .

[101]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[102]  Gottfried Strasser,et al.  Surface plasmon-enhanced photoluminescence from a single quantum well , 1999 .

[103]  A. Scherer,et al.  Surface plasmon enhanced light-emitting diode , 2000, IEEE Journal of Quantum Electronics.

[104]  K. Okamoto Plasmonics for Green Technologies: Toward High-Efficiency LEDs and Solar Cells , 2012 .

[105]  Nathan S. Lewis,et al.  Spectral tuning of plasmon-enhanced silicon quantum dot luminescence , 2006 .

[106]  Haiping He,et al.  Enhanced near band edge emission of ZnO via surface plasmon resonance of aluminum nanoparticles , 2011 .

[107]  H. C. Ong,et al.  Surface-plasmon-mediated emission from metal-capped ZnO thin films , 2005 .

[108]  Yean-Woei Kiang,et al.  Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter , 2008 .

[109]  L. Dal Negro,et al.  Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays. , 2010, Optics express.

[110]  Yen-Cheng Lu,et al.  Localized surface plasmon-induced emission enhancement of a green light-emitting diode , 2008, Nanotechnology.

[111]  G. Schatz,et al.  Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles , 2008 .

[112]  Chel-Jong Choi,et al.  Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling , 2012 .

[113]  Axel Scherer,et al.  Time resolved photoluminescence spectroscopy of surface-plasmon-enhanced light emission from conjugate polymers , 2006 .

[114]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .