Variational approach to interface element modeling of brittle fracture propagation

Abstract The paper proposes a variational approach to model brittle fracture propagation based on zero-thickness finite elements. Similar to the phase-field model for fracture, the problem of a fractured structure is variationally formulated by considering a minimization problem involving bulk and fracture surface energies. With the help of a damage variable used as an additional degree of freedom, the fracture propagates according to the values of the minimizers of the total potential energy. This damage variable is restricted to dimensionally reduced interface elements inserted between element boundaries. Crack opening is predicted when the elastic energy within the interface surface exceeds the critical energy release rate. The solution of the discretized system of equations is performed in a staggered scheme, solving first for the displacement field and then searching for the solution for the updated nodal damage variables. Selected numerical examples, including re-analyses of laboratory tests characterized by rather complex crack paths, are presented to demonstrate the performance of the proposed variational interface model.

[1]  Victor E. Saouma,et al.  Numerical evaluation of the quarter‐point crack tip element , 1984 .

[2]  M. Xie,et al.  Energy-Based Cohesive Crack Propagation Modeling , 1995 .

[3]  Günther Meschke,et al.  Multilevel Computational Model for Failure Analysis of Steel-Fiber–Reinforced Concrete Structures , 2016 .

[4]  Xiangting Su,et al.  Finite Element Modelling of Complex 3D Static and Dynamic Crack Propagation by Embedding Cohesive Elements in Abaqus , 2010 .

[5]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[6]  Christian Miehe,et al.  Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation , 2012, International Journal of Fracture.

[7]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[8]  Gregory J. Tallents,et al.  Temporal resolution of a transient pumping X-ray laser , 2001 .

[9]  R. Borst Numerical aspects of cohesive-zone models , 2003 .

[10]  Magdalena Ortiz,et al.  An eigenerosion approach to brittle fracture , 2012 .

[11]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[12]  G. Meschke,et al.  Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures , 2017, Materials.

[13]  Ercan Gürses,et al.  A robust algorithm for configurational‐force‐driven brittle crack propagation with R‐adaptive mesh alignment , 2007 .

[14]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[15]  René de Borst,et al.  Computational Modelling of Concrete Structures , 2010 .

[16]  George Z. Voyiadjis,et al.  Nonlocal damage model using the phase field method: Theory and applications , 2013 .

[17]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[18]  Amir R. Khoei,et al.  Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique , 2008 .

[19]  Ralf Müller,et al.  A continuum phase field model for fracture , 2010 .

[20]  Jean-François Dubé,et al.  Calibration of nonlocal damage model from size effect tests , 2003 .

[21]  L. Herrmann Finite Element Analysis of Contact Problems , 1978 .

[22]  Antonio Aguado,et al.  Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior , 2008 .

[23]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[24]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[25]  Chong Wang,et al.  On the I–II mixed mode fracture of granite using four-point bend specimen , 2016 .

[26]  A. Ingraffea,et al.  Numerical modeling of discrete crack propagation in reinforced and plain concrete , 1985 .

[27]  A. Evans,et al.  MIXED-MODE FRACTURE: THE FOUR-POINT SHEAR SPECIMEN , 1990 .

[28]  G. R. Irwin,et al.  Linear fracture mechanics, fracture transition, and fracture control , 1968 .

[29]  Richard E. Goodman,et al.  CLOSURE ON A MODEL FOR THE MECHANICS OF JOINTED ROCK , 1968 .

[30]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[31]  John R. Rice,et al.  A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture , 2001 .

[32]  E. Orowan,et al.  Fracture and strength of solids , 1949 .

[33]  I. Carol,et al.  Micromechanical analysis of quasi‐brittle materials using fracture‐based interface elements , 2001 .

[34]  De Xie,et al.  Discrete cohesive zone model for mixed-mode fracture using finite element analysis , 2006 .

[35]  Milan Jirásek,et al.  Reinterpretation of Karihaloo's size effect analysis for notched quasibrittle structures , 2001 .

[36]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[37]  Michael Ortiz,et al.  An Efficient Adaptive Procedure for Three-Dimensional Fragmentation Simulations , 2001, Engineering with Computers.

[38]  Osvaldo L. Manzoli,et al.  Modeling of interfaces in two-dimensional problems using solid finite elements with high aspect ratio , 2012 .

[39]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[40]  Paul A. Wawrzynek,et al.  Quasi-automatic simulation of crack propagation for 2D LEFM problems , 1996 .

[41]  René de Borst,et al.  Mesh-independent discrete numerical representations of cohesive-zone models , 2006 .

[42]  M. Elices,et al.  The cohesive zone model: advantages, limitations and challenges , 2002 .

[43]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[44]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[45]  Glaucio H. Paulino,et al.  A general topology-based framework for adaptive insertion of cohesive elements in finite element meshes , 2008, Engineering with Computers.

[46]  Stephen A. Vavasis,et al.  Obtaining initially rigid cohesive finite element models that are temporally convergent , 2005 .

[47]  G. Meschke,et al.  Energy-based modeling of cohesive and cohesionless cracks via X-FEM , 2007 .