Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency

[1]  Dana Carroll,et al.  Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo , 2018, Proceedings of the National Academy of Sciences.

[2]  M. Nykter,et al.  Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio) , 2018, PloS one.

[3]  Kristopher T. Jensen,et al.  Chromatin accessibility and guide sequence secondary structure affect CRISPR‐Cas9 gene editing efficiency , 2017, FEBS letters.

[4]  David A. Brafman,et al.  The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells. , 2017, ACS synthetic biology.

[5]  Ronja Biehs,et al.  DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination , 2017, Molecular cell.

[6]  Zhicheng Zuo,et al.  Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations , 2016, Scientific Reports.

[7]  A. May,et al.  DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. , 2016, Molecular cell.

[8]  M. Gonçalves,et al.  Probing the impact of chromatin conformation on genome editing tools , 2016, Nucleic acids research.

[9]  Max A. Horlbeck,et al.  Nucleosomes impede Cas9 access to DNA in vivo and in vitro , 2016, eLife.

[10]  Li Zhang,et al.  Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9 , 2016, Scientific Reports.

[11]  Hui Zhao,et al.  Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair , 2016, Nucleic acids research.

[12]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[13]  R. Tjian,et al.  Dynamics of CRISPR-Cas9 genome interrogation in living cells , 2015, Science.

[14]  Clifford A. Meyer,et al.  Sequence determinants of improved CRISPR sgRNA design , 2015, Genome research.

[15]  G. Church,et al.  Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach , 2015, Nature Methods.

[16]  Hong Yan,et al.  Enriching CRISPR-Cas9 targeted cells by co-targeting the HPRT gene , 2015, Nucleic acids research.

[17]  Jennifer A. Doudna,et al.  A Cas9–guide RNA complex preorganized for target DNA recognition , 2015, Science.

[18]  Silvio C. E. Tosatto,et al.  INGA: protein function prediction combining interaction networks, domain assignments and sequence similarity , 2015, Nucleic Acids Res..

[19]  G. Weinstock,et al.  HCoDES reveals chromosomal DNA end structures with single-nucleotide resolution. , 2014, Molecular cell.

[20]  B. van Steensel,et al.  Easy quantitative assessment of genome editing by sequence trace decomposition , 2014, Nucleic acids research.

[21]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[22]  L. Symington End resection at double-strand breaks: mechanism and regulation. , 2014, Cold Spring Harbor perspectives in biology.

[23]  M. Jinek,et al.  Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease , 2014, Nature.

[24]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[25]  Mazhar Adli,et al.  Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease , 2014, Nature Biotechnology.

[26]  Ludo Pagie,et al.  Using TRIP for genome-wide position effect analysis in cultured cells , 2014, Nature Protocols.

[27]  Alistair G. Rust,et al.  Chromatin Landscapes of Retroviral and Transposon Integration Profiles , 2014, PLoS genetics.

[28]  David A. Scott,et al.  Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells , 2014, Nature Biotechnology.

[29]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[30]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[31]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[32]  Wouter Meuleman,et al.  Chromatin Position Effects Assayed by Thousands of Reporters Integrated in Parallel , 2013, Cell.

[33]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[34]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[35]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[36]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[37]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[38]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[39]  K. Kinzler,et al.  Detection and quantification of rare mutations with massively parallel sequencing , 2011, Proceedings of the National Academy of Sciences.

[40]  J. Ji,et al.  Polycomb CBX7 Directly Controls Trimethylation of Histone H3 at Lysine 9 at the p16 Locus , 2010, PloS one.

[41]  M. Lieber,et al.  The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. , 2010, Annual review of biochemistry.

[42]  M. McVey,et al.  MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. , 2008, Trends in genetics : TIG.

[43]  B. Doble,et al.  The ground state of embryonic stem cell self-renewal , 2008, Nature.

[44]  A. Bradley,et al.  Generation of an inducible and optimized piggyBac transposon system , 2007, Nucleic acids research.

[45]  Zhenhua Yao,et al.  Isolation and characterization of the murine Nanog gene promoter , 2005, Cell Research.

[46]  M. Tada,et al.  Octamer and Sox Elements Are Required for Transcriptional cis Regulation of Nanog Gene Expression , 2005, Molecular and Cellular Biology.

[47]  H. Niwa,et al.  An efficient system to establish multiple embryonic stem cell lines carrying an inducible expression unit , 2005, Nucleic acids research.

[48]  Peter A. Jones,et al.  Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Duncan Walker,et al.  Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities , 2002, Oncogene.

[50]  R. Evans,et al.  A retinoic acid-triggered cascade of HOXB1 gene activation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Krumlauf,et al.  Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. , 1994, Science.

[52]  M. Rudnicki,et al.  The mouse Pgk-1 gene promoter contains an upstream activator sequence. , 1991, Nucleic acids research.

[53]  H. Hamada,et al.  The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. , 1991, The EMBO journal.

[54]  M. Taira,et al.  Selective activation of testis-specific genes in cultured rat spermatogenic cells. , 1990, Biochimica et biophysica acta.

[55]  M. Monk,et al.  HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells , 1987, Nature.

[56]  Michael Boshart,et al.  A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus , 1985, Cell.

[57]  S. Cory,et al.  Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. , 1983, The EMBO journal.