Precisely Engineered Microporous Layers for Proton Exchange Membrane Fuel Cells with High Power Density

[1]  Junfen Li,et al.  Rational design of carbon network structure in microporous layer toward enhanced mass transport of proton exchange membrane fuel cell , 2022, Journal of Power Sources.

[2]  A. Yu,et al.  Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells , 2021, Advanced Energy Materials.

[3]  F. Mojica,et al.  Experimental and computational study of the microporous layer and hydrophobic treatment in the gas diffusion layer of a proton exchange membrane fuel cell , 2021 .

[4]  D. Wilkinson,et al.  Modified New Microporous Carbon Layer Structure for Improved PEM Fuel Cell Performance with Low-Pt Catalyst Loadings , 2021, Journal of the Electrochemical Society.

[5]  N. Brandon,et al.  Designing the next generation of proton-exchange membrane fuel cells , 2021, Nature.

[6]  Tianya Li,et al.  Effect of pore size distribution in the gas diffusion layer adjusted by composite carbon black on fuel cell performance , 2020, International Journal of Energy Research.

[7]  Tianya Li,et al.  Effects of thickness and hydrophobicity of double microporous layer on the performance in proton exchange membrane fuel cells , 2020 .

[8]  Xiangyang Zhou,et al.  Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: Material and structure designs of microporous layer , 2020 .

[9]  S. Rowshanzamir,et al.  Self-Humidifying Proton Exchange Membranes for Fuel Cell Applications: Advances and Challenges , 2020 .

[10]  M. Andersson,et al.  A Detailed Analysis of Internal Resistance of a PEFC Comparing High and Low Humidification of the Reactant Gases , 2020, Frontiers in Energy Research.

[11]  K. Karan,et al.  Highly-ordered Nanoporous Carbon Scaffold with Controllable Wettability as the Microporous Layer for Fuel Cells. , 2020, ACS applied materials & interfaces.

[12]  R. Lin,et al.  Microporous layers with different decorative pattern for polymer electrolyte membrane fuel cells. , 2020, ACS applied materials & interfaces.

[13]  P. Boillat,et al.  Impact of the Microporous Layer on Gas Diffusion Layers with Patterned Wettability I: Material Design and Characterization , 2020, Journal of The Electrochemical Society.

[14]  Liangfei Xu,et al.  Partial flooding and its effect on the performance of a proton exchange membrane fuel cell , 2020 .

[15]  Do-Young Kim,et al.  In-plane 2-D patterning of microporous layer by inkjet printing for water management of polymer electrolyte fuel cell , 2020 .

[16]  Roman Vetter,et al.  Free open reference implementation of a two-phase PEM fuel cell model , 2018, Comput. Phys. Commun..

[17]  H. Gasteiger,et al.  Impact of Microporous Layer Pore Properties on Liquid Water Transport in PEM Fuel Cells: Carbon Black Type and Perforation , 2017 .

[18]  Felix N. Büchi,et al.  Influence of Operating Conditions and Material Properties on the Mass Transport Losses of Polymer Electrolyte Water Electrolysis , 2017 .

[19]  A. Bazylak,et al.  Balancing mass transport resistance and membrane resistance when tailoring microporous layer thickness for polymer electrolyte membrane fuel cells operating at high current densities , 2016 .

[20]  Felix N. Büchi,et al.  Investigation of Mass Transport Losses in Polymer Electrolyte Electrolysis Cells , 2015 .

[21]  Min‐Hsing Chang,et al.  Effect of microporous layer composed of carbon nanotube and acetylene black on polymer electrolyte membrane fuel cell performance , 2015 .

[22]  Rui Chen,et al.  Modelling water intrusion and oxygen diffusion in a reconstructed microporous layer of PEM fuel cells , 2014 .

[23]  G. Dotelli,et al.  Novel superhydrophobic microporous layers for enhanced performance and efficient water management in PEM fuel cells , 2014 .

[24]  S. H. Kim,et al.  Improvement of the mechanical durability of micro porous layer in a proton exchange membrane fuel cell by elimination of surface cracks , 2012 .

[25]  H. Nakajima,et al.  Hydrophilic and hydrophobic double microporous layer coated gas diffusion layer for enhancing performance of polymer electrolyte fuel cells under no-humidification at the cathode , 2012 .

[26]  F. Weng,et al.  Experimental study of micro-porous layers for PEMFC with gradient hydrophobicity under various humidity conditions , 2011 .

[27]  Eunsook Lee,et al.  Development of a novel hydrophobic/hydrophilic double micro porous layer for use in a cathode gas di , 2011 .

[28]  Pierangelo Metrangolo,et al.  Preparation and characterization of superhydrophobic conductive fluorinated carbon blacks , 2010 .

[29]  Ki Tae Park,et al.  Determination of the pore size distribution of micro porous layer in PEMFC using pore forming agents under various drying conditions , 2010 .

[30]  Toshiaki Konomi,et al.  Microporous layer coated gas diffusion layers for enhanced performance of polymer electrolyte fuel cells , 2010 .

[31]  Datong Song,et al.  The effect of relative humidity on binary gas diffusion. , 2009, The journal of physical chemistry. B.

[32]  Jin Hyun Nam,et al.  Microporous layer for water morphology control in PEMFC , 2009 .

[33]  Sungjin Kim,et al.  Fabrication of GDL microporous layer using PVDF for PEMFCs , 2009 .

[34]  Y. Chen-Yang,et al.  Highly efficient single-layer gas diffusion layers for the proton exchange membrane fuel cell , 2008 .

[35]  A. Bottino,et al.  Effect of preparative parameters on the characteristic of poly(vinylidene fluoride)-based microporous layer for proton exchange membrane fuel cells , 2008 .

[36]  T. Nguyen,et al.  Measurement of Capillary Pressure Property of Gas Diffusion Media Used in Proton Exchange Membrane Fuel Cells , 2008 .

[37]  Jiujun Zhang,et al.  A review of water flooding issues in the proton exchange membrane fuel cell , 2008 .

[38]  Jianlu Zhang,et al.  A bi-functional micro-porous layer with composite carbon black for PEM fuel cells , 2006 .

[39]  S. H. Kim,et al.  Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO2 particles to catalyst layer , 2006 .

[40]  David Blackwell,et al.  Water flow in the gas diffusion layer of PEM fuel cells , 2005 .

[41]  J. Newman,et al.  Modeling Two-Phase Behavior in PEFCs , 2004 .

[42]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[43]  Pengfei Yang,et al.  Enhanced low-humidity performance in a proton exchange membrane fuel cell by developing a novel hydrophilic gas diffusion layer , 2020 .

[44]  A. Bazylak,et al.  Multiwall Carbon Nanotube-Based Microporous Layers for Polymer Electrolyte Membrane Fuel Cells , 2017 .

[45]  F. Büchi,et al.  Saturation Dependent Effective Transport Properties of PEFC Gas Diffusion Layers , 2012 .