Photometric signatures of multiple stellar populations in galactic globular clusters

We calculated synthetic spectra for typical chemical element mixtures (i.e., a standard α-enhanced distribution, and distributions displaying CN and ONa anticorrelations) found in the various subpopulations harboured by individual Galactic globular clusters. From the spectra we determined bolometric corrections to the standard Johnson-Cousins and Stromgren filters and finally predicted colours. These bolometric corrections and colour-transformations, coupled to our theoretical isochrones with the appropriate chemical composition, provided us with a complete and self-consistent set of theoretical predictions for the effect of abundance variations on the observed cluster colour–magnitude diagrams. CNO abundance variations affect mainly wavelengths shorter than ∼400 nm owing to the rise of molecular absorption bands in cooler atmospheres. As a consequence, colour and magnitude changes are largest in the blue filters, independently of using broad or intermediate bandpasses. Colour–magnitude diagrams involving uvy and UB filters (and their various possible colour combinations) are therefore best suited to infer photometrically the presence of multiple stellar generations in individual clusters. They are particularly sensitive to variations in the N abundance, with the largest variations affecting the red giant branch (RGB) and lower main sequence (MS). BVI diagrams are expected to display multiple sequences only if the different populations are characterized by variations of the C+N+ Os um and/or helium abundance that lead to changes in luminosity and effective temperature, but leave the flux distribution above 400 nm practically unaffected. A variation of just the helium abundance up to the level we investigate here exclusively affects the interior structure of stars, and is largely irrelevant for the atmospheric structure and the resulting flux distribution in the whole wavelength range spanned by our analysis.

[1]  B. Strömgren,et al.  Two-dimensional spectral classification of F stars through photoelectric photometry with interference filters , 1956 .

[2]  Judith G. Cohen Abundances in globular cluster red giants. II. M92 and M15. , 1978 .

[3]  Y.-W. Lee,et al.  Multiple stellar populations in the globular cluster ω Centauri as tracers of a merger event , 1999, Nature.

[4]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[5]  Ulisse Munari,et al.  The Asiago Database on Photometric Systems (ADPS) - II. Band and reddening parameters , 2003 .

[6]  J. Norris The Helium Abundances of ω Centauri , 2004 .

[7]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[8]  A. Pietrinferni,et al.  Color Transformations and Bolometric Corrections for Galactic Halo Stars: α-Enhanced versus Scaled-Solar Results , 2004, astro-ph/0408111.

[9]  L. Pasquini,et al.  Metallicities, Relative Ages, and Kinematics of Stellar Populations in ω Centauri , 2005, astro-ph/0509087.

[10]  G. Lodato,et al.  Memorie della Società Astronomica Italiana , 2005 .

[11]  R. G. Gratton,et al.  Li in NGC 6752 and the formation of globular clusters , 2005 .

[12]  Giampaolo Piotto,et al.  Metallicities on the Double Main Sequence of ω Centauri Imply Large Helium Enhancement , 2004, astro-ph/0412016.

[13]  S. Lucatello,et al.  Abundances of C, N, O in slightly evolved stars in the globular clusters NGC 6397, NGC 6752 and 47 Tuc , 2004, astro-ph/0411241.

[14]  A Helium Spread among the Main-Sequence Stars in NGC 2808 , 2005, astro-ph/0505347.

[15]  C. Ree,et al.  Super-Helium-rich Populations and the Origin of Extreme Horizontal-Branch Stars in Globular Clusters , 2005, astro-ph/0501500.

[16]  P. Bonifacio,et al.  ATLAS 9 and ATLAS 12 under GNU-Linux , 2006, Proceedings of the International Astronomical Union.

[17]  Garching,et al.  On the Primordial Scenario for Abundance Variations within Globular Clusters: The Isochrone Test , 2006, astro-ph/0604137.

[18]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and Isochrones for an α-enhanced Metal Distribution , 2006 .

[19]  Piercarlo Bonifacio,et al.  Variations in the lithium abundances of turn off stars in the globular cluster 47 Tucanae , 2007, 0704.2342.

[20]  F. Grundahl,et al.  Strömgren Photometry of Galactic Globular Clusters. I. New Calibrations of the Metallicity Index , 2007, 0707.1019.

[21]  A. Dotter,et al.  Stellar Population Models and Individual Element Abundances. I. Sensitivity of Stellar Evolution Models , 2007, 0706.0808.

[22]  On the effect of helium enhancement on bolometric corrections and Teff-colour relations , 2007, astro-ph/0703094.

[23]  J. Anderson,et al.  The Multiplicity of the Subgiant Branch of ω Centauri: Evidence for Prolonged Star Formation , 2007, astro-ph/0703208.

[24]  S. Cassisi,et al.  A triple main sequence in the globular cluster NGC 2808 , 2007 .

[25]  G. Piotto,et al.  Spectroscopic and photometric evidence of two stellar populations in the Galactic globular cluster NGC 6121 (M 4) , 2008, 0808.1414.

[26]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[27]  Jennifer A. Johnson,et al.  Abundances in giant stars of the globular cluster NGC 6752 , 2005, astro-ph/0504283.

[28]  G. Piotto,et al.  The ACS Survey of Galactic Globular Clusters. III. The Double Subgiant Branch of NGC 1851 , 2007, 0709.3762.

[29]  A. Pietrinferni,et al.  The Horizontal Branch of NGC 1851: Constraints on the Cluster Subpopulations , 2008, 0803.3546.

[30]  S. Cassisi,et al.  The Double Subgiant Branch of NGC 1851: The Role of the CNO Abundance , 2007, 0711.3823.

[31]  A. Renzini Origin of multiple stellar populations in globular clusters and their helium enrichment , 2008, 0808.4095.

[32]  J. Anderson,et al.  MIXED POPULATIONS IN GLOBULAR CLUSTERS: ET TU, 47 TUC? , 2009, 0904.1626.

[33]  P. Bonifacio,et al.  Sulfur in the globular clusters 47 Tucanae and NGC 6752 , 2009, 0904.1417.

[34]  F. Grundahl,et al.  Signatures of intrinsic Li depletion and Li-Na anti-correlation in the metal-poor globular cluster NGC 6397 , , 2009, 0906.2876.

[35]  R. Rich,et al.  A LARGE SAMPLE STUDY OF RED GIANTS IN THE GLOBULAR CLUSTER OMEGA CENTAURI (NGC 5139) , 2009, 0904.3507.

[36]  G. Piotto,et al.  The C+N+O abundances and the splitting of the subgiant branch in the globular cluster NGC 1851 , 2009, 0907.1765.

[37]  F. Grundahl,et al.  A LARGE C+N+O ABUNDANCE SPREAD IN GIANT STARS OF THE GLOBULAR CLUSTER NGC 1851 , 2009, 0902.1773.

[38]  I. Saviane,et al.  M22: AN [Fe/H] ABUNDANCE RANGE REVEALED , 2009, 0909.5265.

[39]  Young-Wook Lee,et al.  Enrichment by supernovae in globular clusters with multiple populations , 2009, Nature.

[40]  J. Ferguson,et al.  A LARGE STELLAR EVOLUTION DATABASE FOR POPULATION SYNTHESIS STUDIES. V. STELLAR MODELS AND ISOCHRONES WITH CNONa ABUNDANCE ANTICORRELATIONS , 2009, 0903.0825.

[41]  Young-Wook Lee,et al.  THE PRESENCE OF TWO DISTINCT RED GIANT BRANCHES IN THE GLOBULAR CLUSTER NGC 1851 , 2009, 0911.5356.

[42]  S. Lucatello,et al.  Na-O Anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra , 2009, 0909.2938.

[43]  L. Pasquini,et al.  Li – O anti-correlation in NGC 6752: evidence for Li-enriched polluting gas , 2010, 1011.1718.

[44]  Santiago,et al.  Wide-field multi-color photometry of the Galactic globular cluster NGC 1261 , 2010, 1005.0007.

[45]  Santiago,et al.  Evidence of the inhomogeneity of the stellar population in the differentially reddened globular cluster NGC 3201 , 2010, 1004.5583.

[46]  Stsci,et al.  NEW HUBBLE SPACE TELESCOPE WFC3/UVIS OBSERVATIONS AUGMENT THE STELLAR-POPULATION COMPLEXITY OF ω CENTAURI , 2010, 1006.4157.

[47]  G. Piotto,et al.  DETAILED ABUNDANCES OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 1851: C+N+O AND THE ORIGIN OF MULTIPLE POPULATIONS , 2010, 1008.4372.

[48]  J. Anderson,et al.  MULTIPLE STELLAR POPULATIONS IN THE GALACTIC GLOBULAR CLUSTER NGC 6752 , 2009, 0912.2055.

[49]  Garching,et al.  CALCIUM AND LIGHT-ELEMENTS ABUNDANCE VARIATIONS FROM HIGH-RESOLUTION SPECTROSCOPY IN GLOBULAR CLUSTERS , 2010, 1002.0002.

[50]  S. Lucatello,et al.  Properties of stellar generations in globular clusters and relations with global parameters , 2010, 1003.1723.

[51]  Garching,et al.  Helium in first and second-generation stars in globular clusters from spectroscopy of red giants , 2010, 1005.2659.

[52]  Santiago,et al.  Strong radial segregation between sub-populations of evolutionary homogeneous stars in the Galactic globular cluster NGC 6752 , 2011, 1101.5178.

[53]  F. Grundahl,et al.  Tracing the evolution of NGC 6397 through the chemical composition of its stellar populations , 2010, 1012.0477.