Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method

Abstract In this paper, we consider the backward problem for diffusion equation with space-fractional Laplacian. In order to overcome the ill-posedness of the backward problem, we propose a fractional Tikhonov regularization method to solve it. Based on the conditional stability estimate and an a posteriori regularization parameter choice rule, the convergence rate estimate is presented under a-priori bound assumption for the exact solution. Finally, several numerical examples are given to show that the proposed numerical methods are effective.

[1]  Weihua Deng,et al.  Regularization methods for unknown source in space fractional diffusion equation , 2012, Math. Comput. Simul..

[2]  R. Sánchez,et al.  Transport equation describing fractional Lévy motion of suprathermal ions in TORPEX , 2014 .

[3]  V. M. Kenkre,et al.  A generalized master equation approach to modelling anomalous transport in animal movement , 2009 .

[4]  R. Gorenflo,et al.  Fractional diffusion: probability distributions and random walk models , 2002 .

[5]  Bernd Hofmann,et al.  Modulus of continuity for conditionally stable ill-posed problems in Hilbert space , 2008 .

[6]  R. Ramlau,et al.  Regularization by fractional filter methods and data smoothing , 2008 .

[7]  K. S. Chaudhuri,et al.  Application of modified decomposition method for the analytical solution of space fractional diffusion equation , 2008, Appl. Math. Comput..

[8]  Huiling Li,et al.  Numerical Identification of Multiparameters in the Space Fractional Advection Dispersion Equation by Final Observations , 2012, J. Appl. Math..

[9]  R. Gorenflo,et al.  Some recent advances in theory and simulation of fractional diffusion processes , 2007, 0801.0146.

[10]  C. Fu,et al.  A regularization for a Riesz–Feller space-fractional backward diffusion problem , 2014 .

[11]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[12]  Ting Wei,et al.  Two regularization methods for solving a Riesz–Feller space-fractional backward diffusion problem , 2010 .

[13]  Shaher Momani,et al.  Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation , 2007 .

[14]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[15]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[16]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[17]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[18]  Y. Povstenko Thermoelasticity that uses fractional heat conduction equation , 2009 .

[19]  S. A. El-Wakil,et al.  Fractional (space–time) diffusion equation on comb-like model , 2004 .

[20]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[21]  B. Hofmann,et al.  Conditional Stability Estimates for Ill-Posed PDE Problems by Using Interpolation , 2013 .

[22]  Santanu Saha Ray,et al.  A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends , 2008, Appl. Math. Comput..

[23]  Jing-jun Zhao,et al.  An inverse problem for space‐fractional backward diffusion problem , 2014 .

[24]  Cong Shi,et al.  A new a posteriori parameter choice strategy for the convolution regularization of the space-fractional backward diffusion problem , 2015, J. Comput. Appl. Math..

[25]  L. Reichel,et al.  Fractional Tikhonov regularization for linear discrete ill-posed problems , 2011 .

[26]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[27]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[28]  Wen Chen,et al.  A coupled method for inverse source problem of spatial fractional anomalous diffusion equations , 2010 .