Factors controlling oxygen migration barriers in perovskites

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  W. Weber,et al.  Microstructure design for fast oxygen conduction , 2016 .

[3]  D. Morgan,et al.  Kinetics of Oxygen Surface Exchange on Epitaxial Ruddlesden-Popper Phases and Correlations to First-Principles Descriptors. , 2015, The journal of physical chemistry letters.

[4]  R. A. Souza Oxygen Diffusion in SrTiO3 and Related Perovskite Oxides , 2015 .

[5]  Byung‐Kook Kim,et al.  Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO 3 : A Density Functional Theory Study , 2015 .

[6]  D. Morgan,et al.  Strain effects on oxygen migration in perovskites. , 2015, Physical chemistry chemical physics : PCCP.

[7]  Michele Pavone,et al.  Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. , 2014, Accounts of chemical research.

[8]  C. Musgrave,et al.  Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics , 2014 .

[9]  B. Yildiz “Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion , 2014 .

[10]  Tam Mayeshiba,et al.  Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures , 2014 .

[11]  Dane Morgan,et al.  Ab initio energetics of charge compensating point defects: A case study on MgO , 2013 .

[12]  P. Balachandran,et al.  Interplay of octahedral rotations and breathing distortions in charge-ordering perovskite oxides , 2013, 1303.0903.

[13]  J. Maier,et al.  Formation and migration of oxygen vacancies in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ) perovskites: insight from ab initio calculations and comparison with Ba(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ). , 2013, Physical chemistry chemical physics : PCCP.

[14]  W. Marsden I and J , 2012 .

[15]  Michele Pavone,et al.  Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials , 2011 .

[16]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[17]  B. Yildiz,et al.  Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations , 2011 .

[18]  J. Maier,et al.  First Principles Calculations of Oxygen Vacancy Formation and Migration in Ba1−xSrxCo1−yFeyO3−δ Perovskites , 2011 .

[19]  Craig A. J. Fisher,et al.  Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. , 2010, Chemical Society reviews.

[20]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[21]  E. Wachsman Development of a Lower Temperature SOFC , 2009 .

[22]  Annabella Selloni,et al.  Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations. , 2008, The Journal of chemical physics.

[23]  Takashi Hibino,et al.  Recent advances in single-chamber solid oxide fuel cells: A review , 2007 .

[24]  Akihisa Inoue,et al.  An application of Pettifor structure maps for the identification of pseudo-binary quasicrystalline intermetallics , 2006 .

[25]  S. Okatov,et al.  Structural distortions and orbital ordering in LaTiO3 and YTiO3 , 2004 .

[26]  Mogens Bjerg Mogensen,et al.  Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides , 2004 .

[27]  Georg Kresse,et al.  Electronic correlation effects in transition-metal sulfides , 2003 .

[28]  Philippe Knauth,et al.  Solid‐State Ionics: Roots, Status, and Future Prospects , 2002 .

[29]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[30]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[31]  M. Alouani,et al.  Implementation of the projector augmented-wave LDA+U method: Application to the electronic structure of NiO , 2000, cond-mat/0003182.

[32]  M. Mogensen,et al.  Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites , 2000 .

[33]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[34]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[35]  S. Tanase,et al.  Electrical conduction behavior in (La0.9Sr0.1)MIIIO3−δ (MIII=Al, Ga, Sc, In, and Lu) perovskites , 1997 .

[36]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[40]  M. Islam,et al.  Oxygen Ion Migration in Perovskite-Type Oxides , 1995 .

[41]  I. Yasuda,et al.  Chemical Diffusion in Polycrystalline Calcium-Doped Lanthanum Chromites , 1995 .

[42]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[43]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[44]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[45]  T. M. Gür,et al.  Oxygen chemical diffusion in strontium doped lanthanum manganites , 1992 .

[46]  James H. White,et al.  Rational selection of advanced solid electrolytes for intermediate temperature fuel cells , 1992 .

[47]  B. Steele Oxygen ion conductors and their technological applications , 1992 .

[48]  K. Kishio,et al.  Diffusion of oxide ion vacancies in perovskite-type oxides , 1988 .

[49]  J. Mizusaki,et al.  Tracer diffusion coefficient of oxide ions in LaCoO3 single crystal , 1984 .

[50]  R. Brook,et al.  A study of oxygen ion conductivity in doped non-stoichiometric oxides , 1982 .

[51]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[52]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[53]  H. Iwahara,et al.  Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell , 1971 .

[54]  J. Orman,et al.  Diffusion in Oxides , 1968 .

[55]  Paul Shewmon,et al.  Diffusion in Solids , 2016 .

[56]  R. Stephenson A and V , 1962, The British journal of ophthalmology.