Determining principal modes in a multimode optical fiber using the mode dependent signal delay method

Mode dispersion can negatively impact optical fiber communication over multimode optical fibers (MMFs). Principal modes are a basis of spatial modes that do not experience mode dispersion up to the first order in frequency. In this work, a method to determine the principle modes of a MMF is proposed. This method is referred to as the mode dependent signal delay method, being the extension to a MMF of the analogous method to determine the principal states of polarization of a single-mode optical fiber. Using this method, principal modes can be determined by measuring N2−1 mean signal time delays at a MMF input for N2−1 launch conditions generated at a MMF output. The differences of the mode dependent signal delay method from the polarization signal delay method and its experimental implementation are discussed.

[1]  B. C. Thomsen,et al.  Mode Division Multiplexing of Modes With the Same Azimuthal Index , 2012, IEEE Photonics Technology Letters.

[2]  Stephen P. Boyd,et al.  Compensation of Multimode Fiber Dispersion Using Adaptive Optics via Convex Optimization , 2008, Journal of Lightwave Technology.

[3]  Joseph M. Kahn,et al.  Algorithms for Compensation of Multimode Fiber Dispersion Using Adaptive Optics , 2009, Journal of Lightwave Technology.

[4]  D. Nolan,et al.  Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. , 2011, Physical review letters.

[5]  Jochen Schröder,et al.  110x110 optical mode transfer matrix inversion. , 2014, Optics express.

[6]  Xin Chen,et al.  25 Gb/s transmission over 820 m of MMF using a multimode launch from an integrated silicon photonics transceiver. , 2014, Optics express.

[7]  B. Heffner,et al.  Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis , 1992, IEEE Photonics Technology Letters.

[8]  Ali H. Sayed,et al.  Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links [Topics in Optical Communications] , 2007, IEEE Communications Magazine.

[9]  D. Nolan,et al.  Higher order Pancharatnam-Berry phase and the angular momentum of light. , 2012, Physical review letters.

[10]  Sercan Ö. Arik,et al.  Effect of Mode Coupling on Signal Processing Complexity in Mode-Division Multiplexing , 2013, Journal of Lightwave Technology.

[11]  H. Kogelnik,et al.  PMD fundamentals: polarization mode dispersion in optical fibers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  I. Lyubomirsky,et al.  10$\, \times\,$10 Gb/s DWDM Transmission Through 2.2-km Multimode Fiber Using Adaptive Optics , 2007, IEEE Photonics Technology Letters.

[13]  A. Forbes,et al.  All-Digital Holographic Tool for Mode Excitation and Analysis in Optical Fibers , 2013, Journal of Lightwave Technology.

[14]  Giovanni Milione,et al.  Manifestation of the Gouy phase in vector-vortex beams. , 2012, Optics letters.

[15]  Toshio Morioka,et al.  Enhancing optical communications with brand new fibers , 2012, IEEE Communications Magazine.

[16]  Mark Shtaif,et al.  Stokes-space analysis of modal dispersion in fibers with multiple mode transmission. , 2012, Optics express.

[17]  Giovanni Milione,et al.  All-digital wavefront sensing for structured light beams. , 2014, Optics express.

[18]  L Nelson,et al.  Measurement of polarization mode dispersion vectors using the polarization-dependent signal delay method. , 2000, Optics express.

[19]  Giovanni Milione,et al.  Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers , 2013 .

[20]  Stuart,et al.  Dispersive multiplexing in multimode optical fiber , 2000, Science.

[21]  Peter J. Winzer,et al.  MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. , 2011, Optics express.

[22]  Joseph M Kahn,et al.  Compensation of Multimode Fiber Dispersion by Optimization of Launched Amplitude, Phase, and Polarization , 2010, Journal of Lightwave Technology.

[23]  Antonio Mecozzi,et al.  Degree of Coherence in Space-Division Multiplexed Transmission , 2014, Journal of Lightwave Technology.

[24]  Adrian A. Juarez,et al.  Perspectives of principal mode transmission in mode-division-multiplex operation. , 2012, Optics express.

[25]  Ivica Kopriva Single-frame multichannel blind deconvolution by nonnegative matrix factorization with sparseness constraints. , 2005, Optics letters.

[26]  L. Marrucci,et al.  Tunable supercontinuum light vector vortex beam generator using a q-plate. , 2013, Optics letters.

[27]  M. Tur,et al.  Polarization Mode Dispersion of Installed Fibers , 2006, Journal of Lightwave Technology.

[28]  Peter J. Winzer,et al.  Making spatial multiplexing a reality , 2014, Nature Photonics.

[29]  H. Kogelnik,et al.  Measurement of second-order polarization-mode dispersion vectors in optical fibers , 1999, IEEE Photonics Technology Letters.

[30]  300m transmission over multimode fiber at 25Gb/s using a multimode launch at 1310nm. , 2013, Optics express.

[31]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[32]  Joseph M Kahn,et al.  Diversity-multiplexing tradeoff in mode-division multiplexing. , 2014, Optics letters.

[33]  J. Kahn,et al.  Mode-dependent loss and gain: statistics and effect on mode-division multiplexing. , 2011, Optics express.